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1. Introduction

The original proposal submitted to NASA under this title entailed a comprehensive

research program for 36 months duration. In view of the fundamental nature of the proposed

investigations, NASA elected to support only a revised program for one year and, thus, provide

the PI with a better starting position for seeking support for the remainder of the program from

other funding agencies, such as the National Science Foundation. Consequently, the activities

reported here should be viewed as start-up for ensuing research rather than a rounded program.

The Revised Statement of Work for the one year effort contained five tasks:

Task 1: Design and assembly of a state-of-the-art high resolution storage and processing

system for microscopy images.

Task 2: Vapor growth kinetics and morphology study with carbon tetrabromide.

Task 3: Design and assembly of a photothermal deflection setup for vapor concen-

tration measurements during crystal growth.

Task 4 : Bridgman growth of iodine single crystals to be used in task 3.

Task 5: Concentration distribution measurements during iodine crystal growth from the

vapor.

2. Work Performed

In the following we will briefly outline the results obtained under the above tasks.

Overall, the work performed considerably exceeds the initial projections. In addition, we have

obtained a breakthrough in the modelling of vapor growth morphologies resulting under

pronounced anisotropy in attachment kinetics, an activity of great importance for the

experimental work pursued here, but not planned under the original proposal.

2.1 Microscopy image storage and processing system

A system was to be developed for the state-of-the-art storage, digitization, processing,

display and printing of images from an existing Leitz microscope-interferometer vidicon

setup.This task has been completed: the system has been designed, assembled and tested. All

components have at least 1024 x 1024 lines of resolution. In addition to the Dage MTI Hr-2000

high resolution monitor, that was already available in our Center, the system consists of the

following components and software packages:

Compaq Deskpro 286, 640K Ram, 40 Mb Hard Drive, with two 1.2Mb, 1/4" floppy drives

Compaq VGA high resolution monitor and high resolution Logitech mouse
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UnivisionUDC 26(Ki-I2M display board

Tecon DVX 1024 frame grabber

Dage MTI precision 81 high resolution TV camera

Pasecon video tube

Dage 207233-1049/30 sync generator

Grundig BK224H high resolution video recorder

Image Pro II Software (IP2UDC)

Customized software for freeze-frame video to capture high resolution 1024 image.

The TECON corporation, from which we purchased the majority of the components, has been

invaluable in the design of this system. They have also assembled and tested the system

according to our specifications prior to shipment to our Center.

With this system we are able to video-record (in real time) microscopic images of crystal

growth morphologies obtained in a growth chamber on the microscope table. These images can

be recalled in their analog form for the identification of crucial events. Selected images are then

saved in digital form in the host computer. These data are available for image analysis and

processing. The overall performance of this system is such that, in combination with the Linnik

microscope interferometer, a depth resolution of about 50 Angstroms can be obtained. In

addition, features which are hardly discernable on the original low contrast image, can be

enhanced for ready recognition.

Features of the ImagePro software enable us to perform several types of image analysis

and processing, such as intensity histograms (256 grey scales), line distance and angle

measurements, spatial frequency filtration as well as contrast changes through stretching and

sliding of intensity distributions.

In view of the high resolution of the system and the high cost of high resolution printers,

we have opted for photographic recording of the (as recorded or processed) monitor images. For

the cataloging of images we are using HP laserjet prints with 300 dots per inch.

The total cost of the system (without high resolution monitor) is about $31,000, of which

$21,000 were provided by this grant. The remainder was provided in about equal parts by NASA
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grantNAG8-711andby theStateof AlabamathroughtheCenterfor Microgravity andMaterials
Research.

2.2 Growth kinetics and morphology study with Carbon Tetrabromide

We have investigated the surface kinetics and morphology of CBr4 during its growth

from the vapor by high resolution microscopy and interferometry. Temperatures were chosen to

include the transition from the low temperature monoclinic to the high temperature cubic phase.

Rounding of corners and edges as well as the development of new facets has been observed with

increasing temperature at fixed supersaturation on approaching, but distinctly below the

transition. The rounding temperatures of crystallographically equivalent corners are equal, and

different for corners formed by different index faces. As the supersaturation is increased the

rounded corners and edges resharpen. Such a rounding/sharpening behavior can be alternatively

induced with successively increasing temperature and supersaturation, respectively. We have

interpreted this behavior in terms of surface roughening theory and computer simulations (see

also Monte Carlo modelling below).

With respect to the polymorphic phase transition of CBr4 we have found that the high

temperature phase begins to form at grain boundaries and other macroscopic defects at

temperatures distinctly below that of the bulk phase transition. The new phase grows partly at

the expense of the old one, leading to surface depressions around the new growth locations. The

growth rate of the new phase during the transition increases dramatically with temperature and

exceeds by far the growth rates observed on the monoclinic and cubic phase alone. These high

growth rates have been experimentally determined to result from simultaneous deposition from

the vapor and redistribution of solid material via surface diffusion. This rapid growth is

associated with morphological instabilities.

This material will be presented at the 1991 March Meeting of the American Physical

Society and in a major publication to be submitted to the Journal of Crystal Growth (see

Sect.2.6).

2.3 Photothermal deflection vapor growth setup

The vapor concentration measurement cell developed earlier under NASA Grant NAG1-

733 was to be improved optically and equiped with a better crystal growth tip. This task has been

completed. A new design, consisting of an optical quality fluorimeter cell cemented to Pyrex

glass tubes, was developed. In addition we have improved the flow conditions through the

upstream iodine reservoir to ensure saturation of the carrier gas at low pressure differentials.
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2._1 Bridgman growth of iodine single crystals

A melt growth technique was to be developed for single crystals of iodine to be used as

seeds for the concentration field measurements. This task has been completed. Originally we had

planned to grow a boule, cleave a seed and mount it to a flat coldfinger. This, however, entails

considerable handling of the (soft) crystal and thus has the potential for introducing high

structural defect densities and chemical impurity levels. To circumvent these drawbacks we have

configured the coldfinger (with a seed selection capillary) as an integral part of the melt growth

system. After growth of a single crystal from a small volume of melt in and onto the coldfinger,

it is transferred to the vapor concentration probing setup.

2.5 Concentration field measurement during growth

The concentration field about growing iodine crystals was to be determined in three

dimensions at various vapor temperatures, supersaturations and inert gas flow velocities.

Concurrent photographic records of the crystal morphology were to be made. This task was

begun and preliminary, encouraging results were obtained. Under growth conditions,

concentration measurements can be made with a concentration resolution of 0.2 tort of iodine in

one atmosphere of nitrogen and a spatial resolution of better than one millimeter in three

dimensions. At low inert gas flow velocities (twice the diffusion velocity) and high wall

temperature gradients, we see clear evidence for variations in the concentration distribution due

to convection rolls. These rolls were also confirmed with flow visualization. At higher flow

velocities and lower wall temperature gradients the concentration profiles closely resemble

solutions to the one-dimensional transport equation with the crystal forming an appropriate sink.

2.6 Monte Carlo Modelling of Growth Morphology with Anisotropic Surface Kinetics

In addition to the tasks outlined in the Revised Statement of Work (see Sect. 1) we have

very successfully become involved in the theoretical treatment of the interplay between vapor

transport (task 5) and anisotropic growth kinetics (task 2) through Monte Carlo modelling. The

model combines nutrient transport, based on a modified diffusion-limited aggregation process,

with anisotropic surface kinetics and surface diffusion. Through a systematic variation of the

simulation parameters (temperature, bond strength and supersaturation), the whole range of

growth morphologies from fully facetted to side-branched dendritic growth is recovered.

The diffusion in the bulk nutrient and the anisotropy in the interface kinetics are seen to

be morphologically destabilizing and stabilizing, respectively. It is found that for a given set of

simulation parameters and symmetry of the lattice, there is a critical size beyond which a crystal

cannot retain its stable, macroscopically facetted growth shape. This critical size scales linearly



with the meanfree path in the vapor. Sinceboth thermal and kinetic rougheningreducethe
kinetic anisotropy, the critical size decreasesas either temperatureor supersaturation is
increased.Surfacediffusion is seento stabilizefacettedgrowth on theshorterscaleof themean

surfacediffusion length.

In simulationswith a uniformdrift superimposedon therandomwalk nutrienttransport,

crystal facesorientedtowards the drift exhibit enhanced morphological stability in comparison to

the purely diffusive situation. Rotational drifts with periodic reversal of direction are found to be

morphologically stabilizing for all faces of the crystal.

These efforts, which have also been supported by the State of Alabama through the

Center for Microgravity and Materials Research, have lead to five publications (some invited)

and several (invited) presentations, which are listed in the following section.

3. Presentations and Publications of Results obtained under this Grant

Rong-Fu Xiao, J. Iwan D. Alexander and Franz Rosenberger, Morphological Evolution of

Crystals Growing in the Presence of a Uniform Drift: A Monte Carlo Simulation, Phys. Rev. A

39, 6397-6401 (1989) attached.

Rong-Fu Xiao, J. Iwan D. Alexander and Franz Rosenberger, Growth Morhology with

Anisotropic Surface Kinetics, J. Crystal Growth 100, 313-329 (1990) attached.

R.-F. Xiao, J.I.D. Alexander and F. Rosenberger, Simulation of Surface Morphologies in

Crystal Growth from Vapor, J. Crystal Growth (in print) attached.

R.-F. Xiao and J.I.D. Alexander and F. Rosenberger, Growth Morphology of Crystal-Vapor

Interfaces, Phys. Rev. (in print) attached.

F. Rosenberger, R. -F. Xiao and J.I.D. Alexander, Morphological Stability of Interfaces with

Strong Anisotropy in Growth Kinetics, in Lectures on Crystal Growth, ed. by H. Komatsu, (in

prin0 attached.

F. Rosenberger, Morphological Stability of Interfaces with Anisotropic Growth Kinetics,

invited seminar, Forschungszentrum Jiilich, Germany, Division for Solid State Physics,

September 18, 1990.
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F. Rosenberger,Morphological Stability of Interfaces with Anisotropic Growth Kinetics,

invited seminar, University of Osnabrtick, Osnabrtick, Germany, Department of Physics,

September 21, 1990.

Rong-fu Xiao, Simulation of 2D Crystal Surfaces Growing from the Vapor, Bull. Am Phys.

Soc. 35, 308 (1990).

- Rong-fu Xiao, Simulation of 3D Crystal Surfaces during Growth, Bull. Am Phys. Soc. 35,

684 (1990).

- Rong-fu Xiao, Simulation of Surfaces Morphologies in Crystal Growth from the Vapor,

invited paper at Eighth American Conference on Crystal Growth, Vail, CO, July 1990.

- Rong-fu Xiao, Simulation of Crystal Growth Morphologies, poster at the Gordon Research

Conference on Fractals, Plymouth State College, NN, August 1990.
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Morphological evolution of crystals growing in the presence of a uniform drift:

A Monte Carlo simulation

Rong-Fu Xiao, J. Iwan D. Alexander, and Franz Rosenberger
Center for Microgravity and Materials Research, University of Alabama in Huntsville,

Huntsville, Alabama 35899
(Received 20 December 1988)

A Monte Carlo model is used to simulate the morphological evolution of crystals growing under
the influence of a uniform drift in the nutrient phase. The model combines nutrient transport (via a

biased random walk) with anisotropic surface attachment kinetics and surface diffusion. It is found

that the crystal morphology closely depends upon the imposed drift, growth temperature (or bond
strength), and supersaturation. Facets facing the drift direction exhibit enhanced morphological

stability as compared with the no-drift situation.

The growth morphology and morphological stability of
a crystal is an extremely complex problem, involving, in

general, an interaction between the effects of nutrient
transport and surface kinetics. 1-7 Recently, the collective
effect of nutrient diffusion, based on a modified diffusion-

limited-aggregation s'9 (DLA) model, and surface kinetics
on morphological evolution has been investigated by a
Monte Carlo (MC) simulation. 1°'11 A variety of condi-

tions, ranging from kinetic- to diffusion-controlled

growth were examined, and successive transitions from
compact faceted (surface kinetics limited case) to open
dendritic morphologies (nutrient diffusion limited case)
were obtained.

However, in reality, a condition of pure diffusion in the
nutrient is rarely found. The trajectories of particles in

the system are inevitably perturbed in some preferential
direction in the presence of some external field. Such

bulk flow may, for instance, be due to buoyancy or sur-
face tension gradients. There is considerable evi-
dence12.13 for the influence of a fluid flow on growth mor-

phology. In particular, the morphological stability of the
interface may be altered by the presence of a fluid flow.

Although progress has been made, the theoretical
study of the influence of a flow on the morphological sta-
bility has been limited by the difficulties associated with
the highly nonlinear governing equations coupled with

moving boundary conditions. So far, only a few cases of

crystal growth from the melt with simple boundary con-
ditions have been solved. 6' 14-21 For instance, Delves 6 has

shown that a forced flow parallel to the interface helps
stablize the interface against a Mullins-Sekerka instabili-

ty. 3 In addition, it has been shown that coupling between
morphological and convective (thermosolutal) modes of

instability can occur in the presence of nonparallel
flow. 18-21

For more complex situations, a microscopic approach,

e.g., the tracking of individual growth units by MC simu-
lation 22 appears more promising. In 1983, Meakin, 23 for
the first time, investigated the drift effect on pattern for-

mation by applying a MC method. In his approach, a

drift was superimposed on the random walk of a DLA
model. A crossover was found from the DLA fractal on

short length scales to a uniform structure on larger
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length scales as a drift was applied. However, lacking
realistic elements of attachment kinetics, Meakin's model

cannot give insight for a crystal growth system. In addi-
tion, his computational algorithm cannot readily be

shown to correspond to a known formulation of macro-

scopic transport.
In this communication we use a MC model, based on

our previous work, 1°'11 to study the morphological

change of a crystal that grows in response to a chemical

potential gradient. We examine the effect of a nutrient
drift, and also account for nutrient diffusion and surface
kinetics. We use a uniform drift velocity superimposed

on a random walk, in contrast to real systems where the
bulk velocity depends on the local (viscous) flow

configuration. Consequently, the result of our formula-
tion, though providing physical insight, can be con-

sidered at best qualitative.
We consider a crystal growth system which consists of

two basic processes, e.g., nutrient transport and surface
kinetics. We assume that the motion and aggregation of

growth units take place on a 2D square grid, and restrict
our study to a physical system with the following proper-
ties. (1) The nutrient phase is gaseous. (2) The nutrient

phase consists of two components; component A, the
growth species, is highly diluted in an inert gas B, which
randomizes the motion of A. (3) The system is iso-

thermal, i.e., heat conduction is rapid compared to mass
diffusion, thus the latent heat released during crystalliza-

tion can be ignored. (4) The chemical potential is taken
to be a linear function of the growth species concentra-
tion. This results in a Fickian transport equation and

thus, a random walk may be used to describe diffusion in

the nutrient phase. 10'11'24 (5) There is a macroscopic as
well as microscopic drift acting on the individual growth
unit in the nutrient.

Under purely diffusive conditions the nutrient trans-

port can be described by a simple random walk with an
isotropic jumping probability. I°'11 However, if there ex-
ists an externally imposed drift, the individual jumps of
the random walk will be biased. This is schematically de-

picted in Fig. 1, where the dashed circle is the source
from which growth units are releasedl The vector a is an
unbiased random walk with equal jumping probability to

6397 © 1989 The American Physical Society
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pied nearest neighbors of site i, and ff is the interaction

energy of a molecule with a nearest neighbor.
If the particle does not stick onto the site i, it will jump

to one of its unoccupied neighbor sites. The jump proba-
bility from site i to a neighboring unoccupied site j (on
the surface or in the nutrient) is t°

/3(ni--nj)

(8)
Pi_j-- c' /3tn,-nj) 'E

j=l

where c' is the number of unoccupied nearest neighbors
of site i. Clearly, larger n i results in a higher probability

that a molecule will jump to site j on the interface.

The combination of Eqs. (7) and (8) contains the essen-
tial physics of the surface kinetics for a crystal growing
from a vapor. It should be realized that the crystal an-

isotropy has already been taken into account implicitly in
Eqs. (7) and (8), since n is an anisotropic factor.

Based on the preceding formulation, we carried out the
simulation by following the previous procedure including

the multiple registration technique to reduce the
noise, m°'Ix In this simulation, a larger size of growth pat-
tern (104 particles) with stable morphology was obtained

by increasing the mean free path to 10 lattice units. The

source boundary was chosen at rs = rma x q-50, where rma x
is the radius of gyration of the growing cluster. The

simulation was implemented on a CRAY X-MP/24 and
typical cpu times used for each simulation were around
2000-5000 sec. To show the time sequence of the growth

patterns, we divided the total growth particles into four

groups of 2500 each and indicated the morphology asso-
ciated with each group by a line.

For comparison, results without a superimposed drift
("diffusion only") are presented in Fig. 2. This figure

shows the effect of bond strength or growth temperature,
i.e., ck/kT on the growth pattern for a constant supersa-
turation (y-=2.0 or A# /k T =0. 69). One can see that

with increasing temperature (or decreasing bond

strength) the crystal morphology changes. At low tem-

perature, despite an appreciable supersaturation, the
crystal is still able to retain a compact faceted form [Fig,

2(a)]. At higher/3's a branched pattern with four main

protrusions results [Figs. 2(b) and 2(c)]. Finally, at the

highest value of/3, it becomes dendritic. The formation
of these different growth morphologies has been ex-
plained by consideration of the collective effect of nu-
trient diffusion and surface kinetics._°'t_

Figure 3 shows the effect of a drift on growth morpho-

logies at a fixed drift magnitude (8 = 50 lattice units), and
otherwise the same conditions as Fig. 2. One can see that
as a drift is applied, asymmetric growth patterns appear.

The sites facing the drift grow much faster than those op-
posite to the drift. Although the drift affects all cases,

the response of growth morphology increases with de-
creasing bond strength or increasing temperature [Figs.

3(a)-3(d)]. In addition to modifying the growth rate, the
drift is also seen to stabilize the faceted growth in com-

parison to the "no-drift" case. Whereas, e.g., the no-drift
patterns of Figs. 2(b) and 2(c) show deep depressions in
the middle of the facets, the corresponding drift cases

[Figs. 3(b) and 3(c)] exhibit much smoother facet surfaces
on which the flow impinges. The flow causes a stronger
increase of the mass flux to the center of a facet, as com-

pared to the edges. This can even lead to the overgrowth
of a depression [see the "hole" in Fig. 3(d)] that remains

open in the corresponding no-drift case [Fig. 2(d)].

Figure 4 shows the effect of changes in drift direction
[Figs. 4(a) and 4(b), 8=50] and magnitude [Fig. 4(c),

5=25; Fig. 4(d), _=16]. One can see that the growth
pattern depends closely on the characteristics of the drift.
As the drift direction changes the crystal changes its

shape accordingly. The morphologically stabilizing effect
of the drift on the faceted growth morphology is again

well illustrated in the sequence a,c,d of Fig. 4. Note that,
here, the supersaturation and the bond strength and/or

temperature correspond to those of the no-drift case of

(c)

FIG. 2. No-drift case (V=0). Effect of bond strength and
temperature on growth pattern with AIJkT=0.69. (a)
d?/kT=4.60, (b) ck/kT=3.90, (c) ck/kT=2.30, (d) _/kT
=0.69.

FIG. 3. Effect of drift on growth morphology with 8 = 50,
and conditions otherwise the same as Fig. 2. The arrow indi-
cates the direction of the drift.
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Current Physics, edited by K. Binder (Springer-Verlag, Berlin,
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23p. Meakin, Phys. Rev. B 28, 5221 (1983).
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GROWTH MORPHOLOGY WITH ANISOTROPIC SURFACE KINETICS

Rong-Fu XIAO, J. Iwan D. ALEXANDER and Franz ROSENBERGER

Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA

Received 15 August 1989; manuscript received in final form 20 November 1989.

A Monte Carlo model is used to simulate the morphological evolution of crystals growing from an incongruent vapor phase. The

model combines nutrient transport, based on a modified diffusion-limited aggregation process, with anisotropic surface kinetics and

surface diffusion. Through a systematic variation of the simulation parameters (temperature, bond strength and supersaturation), the

whole range of growth morphologies from fully facetted to side-branched dendritic growth is recovered. The diffusion in the bulk
nutrient and the anisotropy in the interface kinetics are seen to be morphologically destabilizing and stabilizing, respectively. It is

found that for a given set of simulation parameters and symmetry of the lattice, there is a critical size beyond which a crystal cannot

retain its stable, macroscopically facetted growth shape. This critical size scales linearly with the mean free path in the vapor. Since

both thermal and kinetic roughening reduce the kinetic anisotropy, the critical size decreases as either temperature of supersaturation

is increased. Surface diffusion is seen to stabilize facetted growth on the shorter scale of the mean surface diffusion length. In
simulations with a uniform drift superimposed on the random walk nutrient transport, crystal faces oriented towards the drift exhibit

enhanced morphological stability in comparison to the purely diffusive situation. Rotational drifts with periodic reversal of direction

are found to be morphologically stabilizing for all faces of the crystal.

1. Introduction

The characterization of the conditions under

which a growing crystal is capable of preserving

its shape, i.e. is morphologically stable, is both

scientifically challenging and technologically im-

portant. Morphological stability is necessary for

the growth of homogeneous single crystals that are

needed for numerous device applications. To ade-

quately describe the growth morphology and mor-

phological stability of a crystal, however, is an

extremely complex problem, involving, in general,

an intraction between nutrient transport and in-

terface kinetics [1-3].

Two basic approaches to the morphological

description of crystal growth have been adopted.

The first is the macroscopic approach which in-

volves the solution of a continuum transport equa-

tion coupled with moving boundary conditions [4].

The second is the simulation of microscopic

processes by tracking the individual growth units

[5].

The continuum approach has lead to significant

insight into the morphological evolution of essen-

0022-0248/90/$03.50 © Elsevier Science Publishers B.V.

(North-Holland)

tially isotropically responding, i.e. atomically

rough and, hence, macroscopically non-facetted

[3] interfaces, such as prevail in many melt growth

systems. Morphological stability conditions are

well established for a variety of simple geometries

[4,6-9], including systems with weakly nonlinear

[9-12] and highly nonlinear isotropic response

[13-15]. In addition, the coupling between mor-

phological and hydrodynamic instabilities has been

examined [16-22]. Continuum models have also

been developed for the morphological stability of

non-facetted interfaces with anisotropies in surface

tension and growth kinetics (e.g., refs. [23-26]).

One of the most important results of these treat-

ments is the insight that anisotropies can stabilize

otherwise unstable closed growth forms up to a

certain critical size. For atomically smooth inter-

faces, however, that prevail in most vapor and

solution growth systems, and on which strongly

anisotropic (facetted) growth occurs via atomic

layer spreading, the necessary conditions for mor-

phological stability are only partly understood.

Several workers have proposed an isotropic con-

tinuum formulation for morphological stability in
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interface via diffusion and convection in the nutri-

ent. The actual transport kinetics will, in general,

be determined by the interaction of growth units

(or their precursors) and other species that form
the nutrient. Second, when a growth unit reaches

the interface, typically it does not become im-

mediately incorporated into the growing crystal. It
will adsorb and diffuse on the interface in an

attempt to find an energetically favorable "final"
attachment site, or it will even return to the nutri-

ent before it finds such a site. The latter happens,

for instance, when the growth unit is misoriented
and cannot form stable bonds with the crystal.

Alternatively, the growth unit may impinge onto a
site with too few neighbors to prevent it from

being dislodged by thermal vibrations before it
becomes adsorbed. Or, a growth unit may even

become dislodged after having arrived at an en-

ergetically favorable (" final") site. The probability

of all these steps is determined by the local config-

uration (number of bond-forming neighbors) of
the interface sites that the unit happens to visit

during its (short) residence time. At molecular

length scales, the crystal symmetry will inevitably
be reflected in the anisotropy of the attachment

kinetics. This underlying symmetry will also be

manifested at macroscopic length scales unless the

atomic roughness of the crystal interface is high

enough to allow diffusion in the nutrient phase to
control the evolution of the growing shape. Though

a complete model of such complex scenarios is not

practical at this point, we will formulate a Monte
Carlo model which retains the essential physics of

both nutrient transport and interface kinetics, in-

cluding surface diffusion.

2.1. Mass transport in the nutrient

We assume that the gaseous nutrient phase

consists of two components: a growth species A,

highly diluted in an inert gas B, such that the B
concentration is essentially uniform and A-A in-

teractions can be ignored. Component B rando-

mizes the motion of A, though both components

may be subjected to a uniform drift. In addition

we assume that heat dissipation is rapid compared
to mass diffusion; thus the latent heat released

during crystallization can be ignored and isother-

#,11 \\
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Fig. 1. Schematics of 2D random walk at a large mean free

path. Dashed circle: source. Dotted central region: growing

crystal. Concentric dotted circles: contain possible landing

points (with automatic rounding, i.e. lal+0.5b). The two

small collision zones have been enlarged to illustrate the differ-

ent collision behavior in the bulk and the interface.

mal conditions prevail. The chemical potential is

taken to be a linear function of the growth species
concentration. This results in a Fickian transport

equation and, thus, a random walk may be used to
describe diffusion in the nutrient phase [47-60].

These assumptions are consistent with the fol-

lowing Monte Carlo model. The motion of a given

growth unit in the nutrient is described by a
simple random walk on a discrete lattice of spac-

ing b, with equal jump length, l a], in all direc-

tions, unless a (uniform) drift is superimposed on
the random walk. This is schematically depicted in

fig. 1. The large dashed circle of radius rs is the
source from which walkers are released. After

release, a random walker jumps with equal prob-

ability to all grid points within the annular region

given by lal + 0.5b (with automatic rounding to a
nearest grid point if the chosen jumping site is not

exactly on a grid). The jump length I a I represents

a physical distance on the order of the mean free
path of molecules. The grid spacing b, on the

other hand, represents a lattice unit of the crystal
which is denoted by the dotted central area. In a

real crystal-vapor system the mean free path of a
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a random walk process, the chemical potential of

the source does not appear explicitly in our model.

The A# in eq. (4), therefore, is governed by the

difference between the bulk transport-dependent

vapor concentration at the interface and the equi-

librium concentration at the same temperature.

For a more detailed discussion, see tel [58].

After impingement on the surface, growth units

can either remain at the original site, return to the

vapor (evaporate) or continue to wander to an

unoccupied neighboring site (surface diffusion).

The rates of both the evaporation and surface

diffusion processes are sensitive to the local con-

figuration of the site from which a unit is to be

dislodged. Hence, following Gilmer and Bennema

[46], we cast the evaporation rate into the site-de-

pendent form

1(7 -- ,, exp(- E,/kr), (5)

where p is a lattice vibration factor and E, is the

product of the pair interaction (bond) energy _, of

a unit with a nearest neighbor and the number of

occupied neighbor sites of site i, ni.

The probability that a growth unit sticks onto a

specific site is then P, = K+/(K ÷ + K_). In order

to relate K,,q and _, we assume local equilibrium,
and equate impingement and evaporation rates at

equilibrium and obtain [58]

P, = 3'/_"0-"'/(1 + 3"fl"0-",), (6)

where n 0, the number of nearest neighbors in a
kink site, is 2 for a square lattice and 3 for a

triangular lattice, and 3' = exp(A_t/kT) and fl =

exp(- qJ/kT)

If the growth unit does not stick onto the site i,

it will jump to one of its unoccupied neighbor

sites The jump probability from site i to a

neighboring unoccupied site j (on the surface or
in the nutrient) is assumed to be [58-60]

j = B°'- "' B"'- , (7)
,, j /

where c' is the number of unoccupied nearest

neighbor sites of site i. Clearly, a larger nj results
in a higher probability that a molecule will jump

to site j on the interface.

The combination of eqs. (6) and (7) contains

the essential physics of the surface kinetics for a

crystal growing from a vapor. It should be realized

that the crystal anisotropy has already been taken

into account implicitly in eqs. (6) and (7), since

both n i and nj are anisotropic.
The strength of surface diffusion (described by

eq. (7)) is characterized by the diffusion time or

diffusion length on the surface. An exact calcula-

tion of surface diffusion length is difficult. In our

model we estimate the average surface diffusion
length _s according to

xs- (8)

where _, is the average (residence) "time" (actu-
ally the number of MC steps) for a random walker

to diffuse on the interface (see section 2.3).

2.3. Simulation procedure

A summary of the steps involved in the MC

simulation is presented in fig. 2. Initially, a small

[set initial nucleus]
L

randomly choose starting ]
I location at source [

[-- ]generate a random number

/ I todec d0iompd re .o.
-- t ,, w: _er
/ ]jump !0 chosen point I 1I-'22 --

t

i.e. Mi = M' i +1

@"
Fig. 2. Flowchart of simulation steps.
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Fig. 3. Effect of bond strength and temperature on growth

patterns of a crystal (triangular lattice) at a fixed (normalized)

supersaturation (AIJ/kT= 0.69): (a) ¢k/kT= 3.91; (b) (a/kT

= 2.30; (c) ,b/kT = 0.69; (d) ¢k/kT = 0.36.

under these or even lower _/kT conditions, leads
to the evolution of "macroscopic" depressions

(figs. 3b and 4b). On further increase of the tem-

perature, this transition occurs at even smaller

(a) (b)

(c) (d)

Fig. 4. Effect of bond strength and temperature on growth

patterns of a crystal (square lattice) at a fixed supersaturation

(A#/kT=0.69): (a) ¢k/kT=4.60; (b) e_/kT=3.91; (c)

q,/kT = 2.30; (d) ck/kT = 0.69.
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(a) (b)

(c) (d)

Fig. 5. Nutrient concentration distribution (iso-concentration

lines) around growing crystals. (a) circular crystal; (b), (c), (d)

growth conditions corresponding to the terminal sizes of figs.

4a, 4c and 4d, respectively.

sizes and dendritic growth occurs (figs. 3c and 4d)
which subsequently exhibits extensive side-branch-

ing (fig. 3d).
The concentration distributions about a cir-

cular growth pattern and the terminal crystal

shapes of figs. 4a, 4c and 4d are presented in figs.

5 and 6. The iso-concentration lines in fig. 5 are

spaced by constant concentration increments.

Hence, more closely spaced lines indicate steeper

concentration gradients. This is further illustrated

in fig. 6 by the corresponding concentration pro-

files along the radius vector through a comer and

center of a facet, respectively. As expected, for the

round pattern (test case for our algorithm) the
concentration distribution is circular, with the

concentration gradient decreasing with increasing
distance from the growing interfaces. For the

"crystals", however, one sees that both concentra-

tion and concentration gradient are significantly

higher in the corner regions than at the center of

the facet (or what used to be a facet at smaller

crystal size), in agreement with numerous experi-

mental findings [62-64]. These differences in-

crease as the growing crystal takes on a more
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shape preservation for facetted crystals [36] and its

adaption by Kuroda et al. [37]; see also ref. [42].

The stabilizing effect of the increase in step den-

sity as the face center depression increases was

expressed in terms of kinetic coefficients (fl(p) in

ref. [361 and B(p) in ref [42]), where p is the local

slope of the vicinal surface segment (local tangent

to the depression). The growth rate normal to the

macroscopic face (fictitious singular surface), V,,
is then related to the nonuniform, normalized

supersaturation, o, in the form

Vn = fl(p)o. (9)

It is interesting to 're-examine the microscopic
morphologies assumed to be relevant in these

works, which postulate equivalence of the kinetic

effect of microscopic depressions (fig. 7a) and

protrusions or hillocks (fig. 7b). Depressions are

thought to prevail at higher supersaturations,

where 2D nucleation in the comer regions is likely

to form the dominant source for growth steps.

Protrusions, on the other hand, are thought to

prevail at lower supersaturation, where defects,

such as screw dislocations (that supposedly form

more readily in the center region) supply the

growth steps. These features have been well char-

acterized for stable growth from a more uniform
nutrient field. It is not clear, however, how an

initially shallow hillock, in order to become kineti-

cally more active, can increase in central height

when, as growth proceeds, the nutrient supply

progressively dwindles in the center region. Our

simulations, as well as numerous growth-mor-

phology investigations of actual crystals [67], do

not lead to protrusions at face centers.

The above simulations also show, for the first
time, the destabilizing effect of an increase in the

growth temperature. This is revealed explicitly in
figs. 3 and 4 which present a transition from

facetted to non-facetted shapes as the temperature

is increased. At low temperatures the morphology

is controlled by surface kinetics while at higher

temperatures volume diffusion is seen to be

shape-determining. Fig. 8, which has been com-

puted from (6), shows that at a fixed supersatura-
tion an increase in temperature results in reduc-

tion in the anisotropy of the sticking probability.

1.0
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m
0
E
o.

0 0.4
_z
fig

P2

0.2

00 ....
0 1 2 3 4

%

1 2 3 4 5

NORMALIZED BOND STRENGTH, _/kT

Fig. 8. Dependence of sticking probability P, (eq. (6)) on

normalized bond strength/temperature and number of oc-

cupied neighbor sites at fixed A#/kT= 0.69 for (a) square

lattice (n o = 2) and (b) triangular lattice (n o = 3).

The temperature (or bond strength) independence

of P2 in fig. 8a (P3 in fig. 8b) results from the

assumption of local equilibrium underlying (6),
where the vapor-crystal equilibrium is with re-

spect to the kink site. This reduction in the dif-

ferences between the P,'s causes the growth pat-

tern to become more isotropic, more dependent on

the concentration distribution, and thus more
volume diffusion controlled. Note that this transi-

tion is, loosely speaking, analogous to thermal

roughening [68,69]. The latter, however, is associ-

ated with equilibrium conditions and is formally

based on minimization of the crystal's total surface
free energy under the constraint that the volume

be constant. This constraint is not applicable to
the dynamic growth conditions considered here.

Furthermore, a comparison of figs. 3 and 4

shows that a decrease in symmetry of the lattice

decreases the ability of the crystal to retain a

facetted growth form. For instance, facetting pre-

vails at ,_/kT = 3.91 on the triangular lattice (fig.

3a). Yet, the perimeter of the square crystal shows
macroscopic depressions at the same normalized

temperature and supersaturation (fig. 4b); a fully

facetted form only appears at significantly higher
values of q_/kT (fig. 4a). This difference in stabil-
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Fig. 10. Crystal-growth morphology as a collective effect of

supersaturation and bond strength (or temperature) for trian-

gular lattice, M= 3× 103 and mean free path of one lattice

unit. In region I crystals acquire compact-facetted forms; in

region II compact branched with six-fold symmetry; in region

III dendritic with multiple sidebranches. Symbols: Monte Carlo

results judged as "boundary cases". Solid line: Temkin's

boundary between facened and non-facetted growth for a

simple cubic lattice [78]. For more details, see ref. [58].

loss of morphological stability, i.e. under bulk
diffusion-controlled conditions, any macroscopi-

cally facetted growth form will become unstable

beyond a certain M.

3.2. Changes in growth morphology with increase of

mean free path

The above results are all based on the assump-
tion of a mean free path equal to one lattice unit,

i.e. l al = b. In this section we increase the mean

free path and simulate growth patterns containing

104 particles. To show the time sequence of growth

shapes, the total particles are divided into four

groups of 2500 each.

Fig. 11 shows the effect on morphology of

bond strength or temperature at a constant nor-

malized supersaturation,a nd a mean free path of

11 lattice units with otherwise the same growth

conditions (i.e., fl and 3') as fig. 4. It can be seen

that the critical size of a facetted crystal has

increased dramatically. In fig. 4b the crystal has

lost its macroscopically facetted form at a size less
than 3000 particles, but in fig. llb the facetted

crystal remains up to around 6000 particles. In fig.

4d the crystal has become a dendrite with many

son for this is that nutrient diffusion was not

taken into account by Temkin. As pointed out

above, nutrient diffusion is always a destabilizing
factor and reduces the range over which facets can
exist.

It should be emphasized, that the specific loca-
tions of the boundaries between the different mor-

phology regions presented in fig. 10 are only rep-

resentative for growth patterns containing M = 3
× 10 3 particles. For smaller sizes the transitions

will occur at higher supersaturations, and/or lower

bond strength (higher temperature). For larger

sizes, on the other hand, loss of morphological
stability would set in at combinations of lower

supersaturations and higher bond strengths than

in fig. 10. Hence, there is some scaling between

the overall size of a growth pattern and its critical

size. Thus, even under most favorable growth con-

ditions, any system will eventually reach a size

where the destabilizing bulk diffusion will cause

(a) (b)

(c) , (o)

Fig. 11. Effect of bond strength and temperature on growth

patterns at a large mean free path ( I a I = 10 lattice units). The

growth conditions ('t and fl) are the same as in figs. 4a-4d.

Contours correspond to addition of 2500 particles each.
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Fig. 14. Dependence of critical size on mean free path at

81_/kT= 0.69: (a) ¢k/kT= 4.60; (b) ¢k/kT= 3.91; (c) q_/kT

= 2.30; (d) q_/kT = 0.69.

simulation of critical crystal sizes determined ex-

perimentally [31-35]. However, fig. 14 encourages

us to scale linearly to these sizes. For instance,

Nanev and Iwanov [33] have found a critical size
of 120 #m for a Zn crystal (b = 1.38 ,_) growing

from the vapor phase consisting of a Zn partial
pressure of approximately 0.1 Torr in 150 Torr of

hydrogen. The mean free path of H 2 at this pres-
sure and temperature is about 1.2 #m. In order to

obtain a critical size for a relatively large ¢k/kT
system, such as the above Zn experiment, we have

run fig. lla beyond the terminal size shown.

"Macroscopic" loss of face stability was observed
at a size of 130b, i.e. with b = 1.38 ,_ at 1.8 × 10 -2

#m. Remember, that fig. lla is based on l al=

10b, i.e. a mean free path of 1.4 x 10 -3 #m was

assumed. Hence, it is not surprising that the criti-
cal size of a face obtained from our MC simula-

tion is three to four orders of magnitude smaller

than the experimental finding.

3.3. Surface diffusion and facet stability

The effect of surface diffusion on growth mor-

phology has been studied both theoretically

[1,46,58,81] and experimentally [81]. As might be
expected, it was found that surface diffusion can

smooth the growth morphology on the scale of the

average surface diffusion length _s. This can be

explained as follows: Wherever the surface has a

high curvature the nutrient concentration and its

gradient are also high. This is shown in figs. 5 and

6. When surface diffusion is permitted, the con-

centration gradient along the interface is the driv-

ing force for surface flow from a protuberance to

a depression. This makes the protuberance less

stable, while stabilizing the original facet.
The contribution of surface diffusion to face

and facet stability is a function of the surface

diffusion length h_. For the stability of the entire

face, surface diffusion is important only when Xs
is comparable to the face length. Hence, the effect

of surface diffusion is particularly evident in our

simulations when l al = b. However, as a crystal

_grows larger, the size of faces eventually exceeds

_,s. Surface diffusion will then continue to play a
stabilizing role only for terraces or facets with

sizes less than or on the order of the average
surface diffusion length. We have found that even

for the dendritic growth, surface diffusion still has

a noticeable effect on primary branch thickening
[58].

The above trends can clearly be deduced from
figs. 3, 4, 11 and 12. For a quantitative evaluation,

however, one must take into account that the

surface diffusion length decreases with increasing

temperature (decreasing bond strength) and super-
saturation, while being insensitive to changes in

the mean free path. Consequently, as can be seen

from figs. 11 and 12, the terrace size decreases in

response to an increase in temperature, but re-

mains approximately constant as the mean free

path is increased. The connection between the

temperature dependence of _s and face stability is

further illustrated in fig. 15, which shows a

dramatic decrease in the average surface diffusion

length on loss of the planar growth morphology.

Therefore, particularly at low temperature (high
bond strength) and low supersaturation, surface

diffusion must be taken into account in stability
considerations.

3.4. Changes in crystal morphology .in the presence
of a drift

With an externally imposed drift, i.e., d 4:0 in
(1), the individual jumps of a random walker will
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(a) _'_
(b)

(c) (d)
Fig. 18. Effect of periodically reversed rotational drift (Idt =

2b) on growth morphology: (a), (b) A#/kT= 0.69, _k/kT=

3.91; (c), (d) A#/kT= 0.69, ep/kT= 2.30. The rotational di-

rection is reversed after every 2500 particles in 9a) and (c), and

500 particles in (b) and (d).

ing morphological changes under an influence of a
uniform nutrient rotation of I d I = 2b at I a I =

10b; the growth conditions are otherwise the same

as in figs. 11 and 16. The center of rotation

coincides with that of the crystal. One an see that

the rotational drift causes the depressions to be

shifted away from the center of the facet against
the direction of the drift. This is, for instance,

observed in solution growth where uni-directional

rotation causes depressions and "veiling" (occlu-

sion of mother liquor) behind the leading edges of

the crystal; see, e.g., fig. 39 in ref. [83], and ref.

[84].

Fig. 18 shows the morphologies obtained after
the rotational drift has been periodically reversed.

The growth conditions (T and /_) of figs. 18a and

18b correspond to fig. llb and figs. 18c and 18d

to fig. llc. The rotation direction is changed after
the addition of each set of 2500 growth units in

figs. 18a and 18c, while in figs. 18b and 18d the
direction is reversed after every 500 particles. One

can see immediately that crystals with stable mor-

phology result when to rotation is reversed more
frequently (figs. 18b and 18d), whereas in the

corresponding no-drift cases (figs. llb and llc)

deeply depressed morphologies result. This is in
agreement with the common observation of the

benefits of frequent rotation reversal in solution

growth [83,85,86].
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Note added in proof

Most recently, Saito and Ueta have obtained

similar growth shape evolutions from a Monte

Carlo model with anisotropic attachment and

evaporation kinetics features, using a DLA tech-

nique which launches many walkers at once [87].
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ABSTRACT

The morphological evolution of crystals that grow from an incongruent vapor by the

surface nucleation and screw dislocation mechanisms is simulated with a Monte Carlo model.

The model combines volume transport, based on a modified diffusion-limited aggregation

process, with anisotropic surface kinetics without a SOS restriction. It is found that for a given

set of simulation parameters and symmetry of the lattice, there is a critical size beyond which a

•crystal cannot retain its stable, macroscopically faceted shape. This critical size scales linearly

with the mean free path in the vapor. While surface diffusion is seen to stabilize the growth

morphology on the scale of the surface diffusion length, volume diffusion is always

destabilizing. Surface roughness increases with increase in growth temperature and

supersaturation, which reduce the anisotropy in kinetics through thermal and kinetic

roughening, respectively. For the screw dislocation mechanism, that can dominate at low

temperature and supersaturation, we find that the combined effect of bulk and surface diffusion

reduces the terrace width of a growth spiral in its center region. At elevated temperature and

supersaturation normal growth can dominate in comer and edge regions of a crystal, while the

spiral growth mode prevails in the center of a facet.



1. Introduction

Monte Carlo simulation has become a popular method in the study of a crystal growth

process since Chernov and Lewis [1]. Typical studies include equilibrium and growth

morphologies of crystals [2,3], surface roughening transitions [4,5] and growth rate

dependence on supersaturation and temperature [6,7]. For reviews, see [8,9]. These studies

were primarily focused on interfacial kinetics and have occasionally included surface diffusion

[7]. A solid-on-solid (SOS) restriction [10] (no overhangs) was often assumed. The influence

of volume diffusion, i.e., the transport of growth units to the interface, has received less

attention until recently [11-15]. In the event that surface diffusion and interfacial kinetics

govern the growth morphology, these simplifications are not severe limitation. However, in

reality, volume transport often plays a decisive role in limiting morphological stability [16-18].

We have developed a MC model to study the morphological evolution of growing

crystals by considering both volume transport and surface kinetics [11-13]. For the volume

transport, we modified the diffusion-limited aggregation (DLA) model of Witten and Sander

[19]. Our results showed that the diffusion in the volume and the anisotropy in the interface

kinetics axe morphologically destabilizing and stabilizing, respectively. Through a systematic

variation of the simulation parameters (temperature, bond strength and supersaturation), the

whole range of growth morphologies from fully faceted to side-branched dendritic growth was

recovered. For a given set of simulation parameters and symmetry of the lattice, there is a

critical size beyond which a crystal cannot retain its stable, macroscopiclly faceted shape. In

this short paper we wiU pay special attention to the scaling of the critical size as a function of

the mean free path in the nutrient. We will investigate the dependence of surface roughness on

temperature or bond strength and supersaturation. For crystals with a screw dislocation, we

will demonstrate how surface and volume diffusion influence the terrace width of the spiral. In

addition, we will study the competition between the two-dimensional nucleation (2DN) and

screw dislocation growth mechanisms as a function of temperature and supersaturation.
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2. Model

We assume the vapor to be isothermal and composed of an inert gas B in which a

growth species A is highly diluted. In addition, A-A interactions, convection and latent heat

released during crystallization are ignored. A random walk is used to describe the diffusive

motion of growth units from the source [11]. The complex process following the arrival of

growth units at the interface is described by impingement, evaporation and surface diffusion

rate equations [11-13]. The impingement rate K + is assumed to be only dependent on

supersaturation (chemical potential difference Ai.t) between the nearby nutrient and the crystal

surface, i.e. K + - KeqeXp(A_t / kT) with Keq being the temperature dependent equilibrium

value of K +. The evaporation rate, on the other hand, is assumed to be sensitive to the local

configuration of the site from which a unit is to be dislodged. Hence, following Gilmer and

Bennema [7], we cast the evaporation rate K i into the site-dependent form K i = v exp(-

Ei/kT), where v is a lattice vibration factor and, in a nearest neighbor approximation, Ei is

simply the product of the pair interaction (bond) energy _ of a unit with a nearest neighbor and

ni the number of solid neighbors of site i. For the surface diffusion, we assume that the

diffusion rate depends on the occupation condition of both the site i that the particle occupies

and the potential jump site j. Hence, we express the jump rate as Ki_._>j = Vs exp(-AEij/kT).

Here Vs is a surface vibration factor, and the activation energy AU.ij = _b(ni -nj) +8i, where 8 i is

the activation energy when nj > ni. With the above rate equations, the corresponding

probabilities for attachment, evaporation and surface diffusion can be easily obtained [11,13].

The details of the simulation procedures have been reported elsewhere [ 11-13].

3. Results

The results in fig. 1 were simulated on a two dimensional (2D) square lattice. Initially, a

nucleus with a certain size was put at the center of a circular periphery from which random

walkers (growth units A) were released. The radius of this source periphery was chosen such

that the growth shape was not biased [11]. In this figure, both the temperature and

3



supersaturationwerekeptconstant(O/kT= 0.69,Ala/kT= 0.69), and only the mean free path

[a[was changed respectively from lb, 5b, 10b, 25b, 50b to 100b, with b being the lattice

constant. Also, a multiple registration scheme [11] was employed to reduce microscopic noise.

As can be seen from this figure, a crystal can have very different morphologies when the mean

free path is changed. At [_ = b (fig.la) the crystal shows dendritic patterns with many side-

branches from the earlier stages of growth. As 1_ increases less side-branches are observed

(fig.lb,c), and when the mean free path increases to 25b (fig.ld) the side branches disappear,

leaving only depressions at the face center. At a mean free path of 100b, the crystal becomes a

square without any depression. Similar changes of the crystal morphology in three dimension

(3D) are shown in fig.2. In this case, instead of a circular source, a spherical source was used

[13]. Due to computational time limitations, only two different mean free paths were

considered, i.e., 1o[ = lb (fig.2a,b) and [_ = 5b (fig.2c,d). According to gas kinetic theory, the

mean free path is inversely proportional to the total vapor pressure. An increase in the mean

free path implies a decrease in the vapor pressure or diffusion barrier. Figs.1 and 2

demonstrate the importance of the total vapor pressure for the morphological stability in vapor

crystal growth.

Our results also emphasize a fundamental difference between crystal growth and DLA

[19]. As can be seen from the evolution of the growth boundaries in fig.l, the scale invariance

exhibited by DLA does not generally hold in crystal growth. The instantaneous fractal

dimension decreases as the size of the growing crystal increases. For a given set of growth

conditions, a small crystal may be stable, but as it grows bigger and exceeds a certain critical

size, the original crystal shape can lose its stability, and develop a different morphology. This

observation is compatible with the earlier theories [9,18] of faceted growth shape stability.

To quantitatively characterize the critical size of a growing crystal at the onset of

instability, the change of total surface area has been used as a criterion [13]. For a stable

morphology the total surface area (or total surface length in 2D) should linearly scale as a 2/3

power (or 1/2 in 2D) with the number of growth particles. When a crystal loses its stability, the

4
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surface area increase significantly [13]. Fig.3 shows the dependence of the critical size on the

mean free path at fixed Ag/kT for both two and three dimensions. As can be seen, the critical

size increases with decreasing temperature. At fixed temperature and supersaturation, the

critical size scales linearly with the mean free path in the parameter range considered. The

corresponding 3D simulations yield larger slopes, which is due to the fact that, on the average,

there are more solid neighbors associated with interfacial particles in three dimensions and,

thus, the (stabilizing) anisotropy in interface kinetics is more pronounced. Although

computational time limitations do not allow for the direct simulation of the critical size at the

mean free path used in morphological stability experiments [20], fig.3 encourages us to scale

linearly to these conditions. Order-of-magnitude agreement is obtained between experimental

and modelling results [12] for the critical size.

Fig.4 shows the effect of surface diffusion on the morphology of a growing crystal.

This figure was simulated with a special geometry consisting of two parallel infinite planes, of

which one is the growing crystal and the other is the source. Periodic boundary conditions

were used laterally in both x and y directions. In this case, instead of using the multiple

registration scheme to reduce the noise [11], already attached particles were randomly allowed

to evaporate at a rate controlled by a Boltzmarm factor [13]. Volume diffusion is not considered

in this figure, i.e. we have taken the ballistic impingement approach used, e.g., by [7]. For

comparison, a result without surface diffusion is plotted in fig.4a, while fig.4b includes

surface diffusion under otherwise the same _owth conditions (_/kT=l.6, Ag/kT=0.69). It can

be seen that with surface diffusion the crystal surface is much smoother (fig.4b). This is

because surface diffusion can provide an additional way for interfaciaI particles to relax to

some energetically more favorable (low energy) sites and, hence, smooth the surface

morphology. As we have discussed before [12], such a smoothing contribution is effective

only within a length scale comparable to the surface diffusion length.

Fig.5 illustrates the effect of temperature or bond strength and supersaturation on the

morphology of a growing crystal with the inclusion of both volume and surface diffusion. The



geometryandsimulationproceduresarethesameasin fig.4. In fig.5a,bthesupersaturationis

fixed (Al.t/kT- 0.69)and¢/kT decreases from 3.9 to 1.6, while in fig.5c,d the temperature

and bond strength are fixed (¢/kT = 3.9) and supersaturation increases from 5.0 to 7.0. It can

be seen that surface roughness can be influenced by either temperature or supersaturation. In

addition to temperature effects (thermal roughening), surface roughening due to increases in

supersaturation is evident through the reduction in anisotropy [12]. This leads to growth

shapes increasingly influenced by volume diffusion.

Morphological changes under the influence of a single screw dislocation are illustrated

by fig.6. Besides the dislocation, the geometry and boundary conditions are the same as for

figs.4 and 5. In order to emphasize the effect of the dislocation the attachment of isolated

particles (with one solid bond) was suppressed. This approximation is only valid at very low

temperatures where the attachment probability for the isolated particle is negligible [13]. For

this figure the supersaturation is fixed (AI.t/kT=0.69), and the values of ¢/kT is 3.0, 3.9 and

5.3, respectively in figs.6a-c. One sees that with a decrease in temperature not only do the

growth steps become smoother, but also the terrace width increases. Perhaps the feature

deviating most from the classical theory [21] and results of earlier MC simulations [22,23], is

this variation of terrace width on the crystal. For this simulation where [a[=b, narrower widths

are found near the center of the spiral. We explain this as a combination effect of volume and

surface diffusion. A protrusion is formed at the center of the dislocation during growth. Such a

protrusion is better supplied by volume diffusion. In addition, due to small overlaps of surface

diffusion fields farther from the dislocation center, the terrace widths will increase as the step

velocity increases. Note that in reality, such terrace widening can not be expected to occur in

vapor systems where 14 >>b

For fig. 7, a pair of screw dislocations with opposite sign was assumed. As in fig.6,
i

the supersaturation was kept at a constant value (A_/kT=0.69) and ¢/kT was taken to be 3.0,

3.9 and 4.6, respectively in fig.7a-c. To reveal the competition between 2DN growth at the

comers and the dislocation spiral growth at the center, the attachment of isolated particles is

6



allowed.Fig.7ashowsthatat ahighertemperature,in spiteof adislocationat thefacecenter,

growth occursessentiallyfrom the comersof a crystal through2DN. As the temperature

decreasesor bond strengthincreases,the dislocation growth at the face centerbecomes

increasinglyimportant.At ¢/kT = 4.6 (fig.7c) growth occursonly throughattachmentonto

stepsthatoriginateatthecentraldislocationpair.Althougha supersaturationdifferenceexists

betweencomerandfacecenter[12], it is still not high enoughto overcomethe nucleation

barrier for 2DN. Instead, the higher supersaturationmakes the closed dislocation loop

unstable,leading to protrusionsat comers.Suchstar shapeddislocationgrowth hasbeen

observedexperimentally;see,for example,fig.60 in [24].
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Figure

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

captions

Effect of mean free path on growth morphology for 2D square crystal at

Ag/kT=0.69 and ¢/kT=0.69: (a)14 = 1; (b)[a{ = 5; (c)I_= 10; (d) la[ = 25; (e)

[4 = 50; (f)[a[ =100 lattice units. Contours correspond to addition of 1000

particles each in (a) and 2500 particles in (b)-(f).

Effect of mean free path on growth morphology for 3D cubic crystal at

Ala/kT = 0.69 and ¢/kT=2.3: (a)-(b)I_ = 1; (c)-(d)]4 = 5 lattice units.

Dependence of critical size on mean free path at Ala/kT = 0.69 in both 2D and

3D for various ¢/kT.

Effect of surface diffusion on surface morphologies at AMkT = 0.69 and

¢/kT=l.6: (a) without surface diffusion; (b) with surface diffusion. No volume

diffusion is considered in both cases.

Effect of temperature or bond strength and supersaturation on surface

morphologies at [4 = lb: (a) Ag/kT = 0.69 and ¢/kT=3.9; (b) At.t/kT = 0.69 and

¢/kT=l.6; (c)Ag/kT = 5.0 and ¢/kT=3.9; (d) Al.t/kT = 7.0 and ¢/kT=3.9.

Growth morphologies in the presence of a single screw dislocation with the

consideration of both surface and volume diffusions at Ag/kT---0.69: (a) ¢/kT=

3.0; (b) ¢/kT=3.9; (c) 0/kT=5.3. The growth of isolated particles is suppressed.

Growth morphologies in the presence of a pair of screw dislocations with

opposite sign at Ag/kT---0.69. Both surface and volume diffusion are

included. (a) ¢/kT= 3.0; (b) ¢/kT=3.9; (c) ¢/kT--4.6.
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We have expanded our earlier Monte Carlo model [Phys. Rev. A38 (I988), 2447; J'. Crystal

Growth 100 (1990), 313] to three dimensions, included re-evaporation after accommodation,

and growth on dislocation-induced steps. We found again that for a given set of growth

parameters, the critical size, beyond which a crystal cannot retain its macroscopically facetted

shape, scales linearly with the mean free path in the vapor. However, the 3-D systems show

increased shape stability compared to corresponding 2-D cases. Extrapolation of the model

results to mean free path conditions used in morphological stability experiments leads to order-

of-magnitude agreement of the predicted critical size with experimental findings. The stability

region for macroscopically smooth (facetted) surfaces in the parameter space of temperature and

supersaturation depends on both the surface and bulk diffusion. While surface diffusion is seen

to smooth the growth morphology on the scale of the surface diffusion length, bulk diffusion is

always destabilizing. The atomic surface roughness increases with increase in growth

temperature and supersaturation. That is, the tendency of surface kinetics anisotropies to stabilize

the growth shape is reduced through thermal and kinetic roughening. It is also found that the



solid-on-solid assumption,which can be advantageouslyused at low temperaturesand

supersaturations,is insufficient to describethegrowth dynamicsof atomicallyroughinterfaces

wherebulk diffusion governstheprocess.

For surfaceswith an emerging screw dislocation we find that the spiral growth

mechanismdominatesat low temperaturesandsupersaturations.Thepolygonizationof agrowth

spiraldecreaseswith increasingtemperatureor supersaturation.Whenthemeanfreepathin the

nutrientis comparableto the latticeconstant,thecombinedeffectof bulk andsurfacediffusion

reducestheterracewidth of a growth spiral in its centerregion.At elevatedtemperaturesand

supersaturations,2-D nucleationcontrolledgrowthcandominatein comerandedgeregionsof a

facet,while the spiralgrowth modeprevailsin its center.Thus,in addition to confirming the

experimentalobservationthat the critical sizeof a growing crystaldependson theprevailing

growthmechanism,weareableto obtaindetailedinsightinto theprocessesleadingto the lossof

faceandfacetstability.

2

PACS numbers:05.50.+q,61.50.Cj, 61.50.Jr,64.60.Cn,68.45.-v.

I. INTRODUCTION

Sincethe first applicationof theMonte Carlo (MC) methodto simulationsof crystal

growth by ChemovandLewis 1,2its use has become widespread. MC studies were concerned

with equilibrium and growth morphologies of crystals, 3"5 surface roughening transitions 6-9 and

growth rate dependence on supersaturation and temperature. 10,11 For reviews see. 12,13 These

studies were primarily focused on interfacial kinetics and have occasionally included surface

diffusion. 11 A solid-on-solid (SOS) restriction (no overhangs) 14 was often invoked. The

influence Of bulk diffusion, i.e., the transport of growth units through the nutrient to the

interface, has received less attention until very recently. 15-18 In the event that surface diffusion

and interfacial kinetics govern the growth morphology, these simplifications are not severe



limitations. However, in reality, bulk transport often plays a decisive role in limiting

morphological stability. 19-26

Recently, we have studied the morphological evolution of growing crystals in two

dimensions by considering both bulk transport and anisotropic interface kinetics. 15,16 For the

bulk transport, we employed the diffusion-limited aggregation model of Witten and Sander. 27 In

the formulation of the interface kinetics we followed largely Gilmer and Bennema's work. 5,11

Through a systematic variation of the simulation parameters (temperature, bond strength and

supersaturation), the whole range of growth morphologies from fully facetted to side-branched

dendritic growth was recovered. Our results show that the diffusion in the bulk nutrient and the

anisotropy in the interface kinetics act morphologically destabilizing and stabilizing, respectively.

For a given set of simulation parameters and symmetry of the lattice, there is a critical size

beyond which a crystal cannot retain its stable, macroscopically facetted growth shape. This

critical size scales linearly with the mean free path in the vapor.

In our previous studies 15,16 we ignored the fact that after attachment, the particles still

have a finite probability to leave the attachment site. This approximation is valid when the system

is far from equilibrium, i.e., the flux of particles impinging on the crystal surface largely exceeds

that of the evaporating particles. However, close to equilibrium, the rates of impingement and

evaporation are comparable. Then a more realistic description of crystal growth must account for

the non-negligible chance that interfacial particles either move (diffuse) on the surface or

evaporate back into the nutrient at any time after the initial accommodation on the surface.

The growth of perfect crystals proceeds typically through two°dimension-nucleation, 28

which is extremely slow at low temperatures and supersaturations. Yet, in reality most crystals

posses considerable concentrations of defects. Certain defects facilitate growth at low

temperatures and supersaturations. Frank 29 who found that a screw dislocation can provide a

inexhaustible source of growth steps. Growth on dislocation-induced steps has since been

observed experimentally by many workers 30-34 and various theories for this growth mechanism

have been proposed.28, 35-38 However, due to the complexity of the problem, no exact solutions



havebeenobtained.Typical simplificationsincludetheuniform spacingof growthsteps,andthe

neglectof nutrientbulk diffusion andsurfacediffusion. AlthoughtherehavebeensomeMonte

Carlosimulationsof dislocation-facilitatedgrowth,39,40 owing to thecomputationallimitations

at thattime,thetransportaspectsof theproblemwerenot takenintoaccount.

In thispaperweexpandourpreviousstudies15,16to threedimensionandinvestigatethe

role of 2-D nucleationgrowthanddislocation-inducedgrowthin themorphologicalevolutionof

growing crystals.Insteadof themultiple-registrationschemeusedin theearlierwork to reduce

microscopicnoise,15,16weemployrealistic re-evaporationconditionsfor interracialparticles.

The model and simulationprocedurearedescribedin Section17.Resultson the influenceof

temperatureandsupersaturationon thesurfacemorphologyof perfectcrystalsarepresentedin

SectionIII.A. Basedon a criterion originally proposedby Burton-Cabreraand Frank,28 the

thermalandkinetic rougheningtransitionsarequantified.In addition, thescalingbetweenthe

critical stablesizeof a facettedcrystalandthemeanfreepathof thevapor is studiedin three

dimensions.In SectionIII.B wedevoteoureffort to surfaceswith dislocationsandpay special

attentionto theshapeandspacingof stepsof growthspirals.We concludethepaperwith results

on thecompetitionbetweennormalgrowthat thecomersanddislocation-facilitatedgrowthat the

centerof afacet.

4

II. MODEL AND SIMULATION PROCEDURE

A. The model

Two different geometries, planar and spherical, are used to study the effect of bulk

transport-induced non-uniformity in nutrient distribution on growth morphology. In the planar

cases (Fig. la), the nutrient is contained between parallel crystal and source planes, which are

infinite in lateral extent. In order to save computational time, we only consider a portion of the

whole system and apply periodic boundary conditions in the x- and y-directions. In the other

cases (Fig. lb) a cubic seed is located at the center of a spherical source. Ideally, the separation

between the growing crystal and the source should be infinite. But, again, to save computational



time we choose a f'mite separation, yet wide enough that the growth shape remains unbiased. 15

As a crystal grows, the distance between crystal surface and source is kept constant.

At molecular length scales, an individual growth unit undergoes generally several basic

processes before becoming part of the growing crystal. After detachment from the source, a

growth unit is transported by bulk diffusion towards the growing interface. The actual transport

kinetics is determined by the interaction of growth units (or their precursors) and other species

that form the nutrient. Usually, when a growth unit reaches the interface, it is not immediately

incorporated into the growing crystal. It will adsorb and diffuse on the interface in an attempt to

find an energetically favorable "final" attachment site, or it will even return to the nutrient before

it finds such a site. The latter happens, for instance, when the growth unit is misoriented and

cannot form stable bonds with the crystal. Alternatively, the growth unit may impinge onto a site

with too few neighbors to prevent it from being dislodged by thermal vibrations before it

becomes adsorbed. A growth unit may even become dislodged after having arrived at an

energetically favorable site. The probability that any of these processes occur is determined by

the local configuration (arrangement of bond-forming neighbors) of the interface sites that the

unit happens to visit. Though a complete model of such complex scenarios is not practical at this

point, we have formulated a Monte Carlo model which retains the essential physics of both

nutrient bulk transport and interface kinetics, including surface diffusion and re-evaporation,

without resorting to the SOS approximation.

We assume that the gaseous nutrient phase consists of two components: a growth species

A, highly diluted in an inert gas B, such that the B concentration is essentially uniform and A-A

interactions can be ignored. Component B randomizes the motion of A. Convection is ignored.

The chemical potential is taken to be a linear function of the growth species concentration only.

This results in a Fickian transport equation and, thus, a random walk may be used to describe

diffusion in the nutrient phase in the form 15,16

C

U(_,s'c) - 1_ U[?+K, (s-1)_] , (1)
i



where U(_,sx) is the probability that a walker can be found at location _ after s steps (with a time

interval x) of jump length (mean free path)[a[. The normalization parameter c represents the total

number of the possible jump sites.

To approximate the complex processes following the arrival of a growth unit on the

interface, we make the following assumptions: The impingement rate K + can be obtained, based

on ideal gas kinetics, from the chemical potential difference AI.t between interfacial vapor and

average surface site in the form 15

6

K + = Keq exp( AI.t / kT) , (2)

where Keq is the temperature dependent equilibrium value of K +. Note that in reality the overall

driving force for the diffusion of A towards the crystal and subsequent interfacial attachment is

the difference in chemical potential between the crystal surface and the source. Since we have

accounted for bulk diffusion via a random walk process, the chemical potential of the source

does not appear explicitly in our model. The Al.t in Eq.2 is therefor governed by the difference

between the bulk transport-dependent vapor concentration at the interface and the equilibrium

concentration at the same temperature. It should not be confused with the chemical potential

difference (bulk supersaturation, undercooling, etc.) used to control experimental crystal growth.

This important point is discussed in more detail in 15,16 and also below.

The rates of both the evaporation and surface diffusion processes are sensitive to the local

configuration of the site from which a unit is to be dislodged. Hence, following Gilmer and

Bennema,11 we write the evaporation rate K i in the site-dependent form

K i = v exp(- Ei/kT) , (3)



wherev is a lattice vibration factor and,in a nearestneighborapproximation,Ei is simply the

product of the pair interaction (bond)energy0 of a unit with a nearest neighbor and ni, the

number of occupied neighbor sites of site i.

For surface diffusion we assume that the diffusion rate depends on the occupation

condition of both the site i that the particle occupies and the potential jump site j. Hence, we

express the jump rate as

7

Ki...)j = v s exp( -AEij ] kT) , (4)

where Vs is a surface vibration factor, and the activation energy

/ _i + d_(ni - nj) for ni > nj
AEij /

_5i for ni -< nj

(5)

i

In reality the term 8i depends on the the specific configuration i-j. For simplicity we have

assumed that for a given i-j the _5term is independent of jump direction, hence the notation _i. As

a consequence of this assumed direction independence, the _i terms cancel in the following

formulations of transition probabilities and, thus do not have to calculated.

In real situations, impingement, surface diffusion and evaporation take place at the same

time with different magnitude. But in the MC simulation we consider one event at a time.

Therefore, it is necessary to determine the sequence in which the events are to be considered. To

this end we define an overall evaporation probability as

p- = K'__ , (6)
K++K -

where K" is the average "evaporation rate"



rll

K---=1E Ki,
i=l
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and the summation is over all m interfacial particles. By considering a local equilibrium condition

for the kink site, on a simple cubic lattice Eq. 6 becomes

p-= B , (8)

B +exp(AI.t/kT) exp(-3_/kT)

with B = _1_1_ exp(-i¢ / kT)
m iml

At equilibrium (Ala/kT = 0), Eq. 8 yields P- = 0.5, i.e. there are approximately equal amounts of

particles evaporating from and impinging onto the crystal surface. At positive supersaturations

(AI.t/kT > 0), P- is less than 0.5, i.e. impingement exceeds evaporation. Correspondingly, for

negative supersaturations (AI.t/kT < 0) the P" will be larger than 0.5, and more interracial particles

will evaporate and the crystal will shrink. These effects will not only be manifested in the growth

and shrinkage rate, respectively, but will also influence the surface morphology.

After having decided the sequence of events, the individual probability for the various

events needs to be determined. This depends on the specific site considered. For impingement,

the probability, according to Eqs. 2 and 3, is Pi s = K +/(K++ K:,). For a simple cubic crystal,

this can be written as (for a derivation in 2-D see 15)

pS=
exp(Ala/kT ) exp[-(3-ni) _/kT]

l+exp(AlJ/kT) exp[-(3-ni) q_/kT]

(9)

The jump probability from site i to a neighboring unoccupied site j (on the surface or in the

nutrient), following, 15 is



Pi_j = Ki-'4J - exp[-(ni-nj) q_/kT)] (10)
C _ C' '

Ki__) j _ exp[-(ni-nj)_/kT)]
j=l j=l

where c' is the number of unoccupied nearest neighbor sites of site i. Clearly, a larger nj results

in a higher probability that a molecule will jump to site j on the interface.

The probability of evaporation for interfacial particles can be expressed as

Ki _exp(-n i¢/kT) i= 1, 2 .... m. (11)
=-if-----

y_.,Ki
i=l

It can be seen from Eq. 11 that the probability of evaporation decreases exponentially with

increasing number of solid bonds and, thus, is highly anisotropic. The most probable sites for

evaporation are those with the least solid neighbors, such as admolecules with a single solid

bond. As the temperature and, thus, the surface roughness is increased, the anisotropy of the

evaporation is decreased.

B. Simulation procedure

A summary of the simulation steps is presented in Fig.2. First the initial conditions are

chosen: for growth onto perfect crystals a smooth surface is set at a certain distance (typically 50

lattice units b, for ]a[ =b) from the source. In the planar case the surface is chosen as a square

lattice measuring 60b x 60b, with periodic boundary conditions in x and y (lateral) directions.

For growth onto dislocated crystals the lateral size is doubled in order to provide space for the

evolution of several turns of a spiral. An initial dislocation is introduced by a vertical slip of parts

of the lattice similar to. 40 Note also that, as the crystal grows, the source is moved outwards

such that the separation remains unchanged, as discussed in. 15

Following the setting of initial conditions and choice of specific input parameter values,

P- is calculated from q_, T, Ag and the current crystal morphology. Comparison of a random
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numberR with P- determinesthe eventto beconsidered.If R > P-, a growth unit is released

from thesourceandbulk diffusion is simulatedthroughan isotropicsequenceof randomjumps

of equallength(meanfreepath)[4.Only when the particle has come within a distance 14 from the

crystal surface is a check implemented that determines whether the interface has been reached.

The following steps, including the determination of average surface diffusion lengths, are similar

to our previous simulations except that we do not impose the multiple registration used in. 15,16

A growth unit is tracked until it has either escaped from the system or is stuck onto the crystal

surface.

If R < P-, an evaporation event is selected. Then, all Pi e (i=l .... m) are calculated from

the recorded positions and neighboring configurations. Another random number R' is generated.

If by chance R' falls into ith interval, the i th interfacial particle is chosen to move. Then,

governed by Eqs. (9), (10) and (11), the particle is kept moving until it has attached to some

interfacial site or escaped to the source. If it sticks on site j, the local pje's, around the new site j

as well as the earlier site i where the particle originated, are recalculated. By using a new random

number, a new evaporation event is selected. The evaporation route is pursued until some particle

has escaped to the source. When this happens the P" is recalculated and a new event is selected.

The simulation is continued until a desired size or layer thickness is reached. In a planar

case, the simulation is continued until 14,400 or 10,000 particles, respectively, have been added

to a perfect or dislocated surface. In a spherical case, the simulation is stopped after a crystal has

become unstable (the criterion for the instability will be discussed later). Typical CPU times were

around 3,000-10,000s on a CRAY X-MP/24 and 5 - 50 hours on an ARDENT computer.

Our model has been designed for computational efficiency. As outlined above (see Eqs.

6-8), the event to be considered is decided upon before the execution based on physical criteria

rather than random choice only. In this way, any "unnecessary" operation is avoided. For

example, evaporation will be executed whenever a random number R is less than P', although

the selection of the actual execution site is quite random. In the earlier models 11,40 the selection

of a particle and calculation of the evaporation probability do not necessarily lead to an actual
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executionof anevaporationprocess.Manyinterfacialparticlesmayhaveto beselected,beforea

real evaporationeventtakesplace.This is particularlytime-consumingunderconditionsof low

temperatureandsupersaturation,in which theinterfaceis rathersmoothandtheprobability of

evaporationis very low.

Note that,unlessstatedotherwise,thesimulationswerecarriedoutwith themagnitudeof

themeanfreepathin thevaporequalonelatticeconstant,lal= b.

III. RESULTS AND DISCUSSION

A. Perfect surfaces

1. Effects of surface and bulk diffusion at various temperatures

As references for the more complex cases to be treated later and for comparison with

earlier work, 6"9 we have first examined cases in which both bulk and surface diffusion were

neglected. Particles arriving at random locations of the crystal surface either stick or axe

discarded. Figure 3 shows the effect of growth temperature or bond strength (i.e. ¢/kT) on the

morphology of a planar crystal surfaces at a constant low value of A_t/kT = 0.35. At low

temperature, as can be seen from Fig.3a, the growing crystal is atomically smooth with

occasional 2-D clusters on the surface, i.e. growth occurs by 2D nucleation only. 28 As the

temperature increases (Fig.3b) the surface becomes rougher and more 2D clusters with smaller

size are formed on the surface and even on top of large clusters. On further increase in

temperature the whole surface becomes atomically rough (Fig.3d), and large size clusters can

hardly be discerned. In this situation the crystal grows more readily due to the disappearance of

the energy barrier for 2D nucleation. This thermal roughening effect has been extensively studied

before under equilibrium conditions. 6"9,12,13 The earlier studies basically employed an algorithm

for random pair exchange controlled by a Boltzmann factor exp(-AE/kT). At equilibrium, the

validity of the algorithm is guaranteed by the thermodynamic principle of path independence. For

a non-equilibrium situation the random pair exchange algorithm is no longer valid. The final

result depends not only on the potential energy between the initial and final sites but also on the
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actualpathof theparticles.In contrast,ourmodel,asdiscussedin sectionII, is moregeneraland

canbeusedin bothequilibriumandnon-equilibriumsituations.

To furtherdemonstratetheeffectof temperatureon themorphologyof agrowing crystal

wehaveplottedin Fig.4 the surface area, normalized by the area of a perfectly smooth surface,

versus number of attached particles (in units of completed layers). The four curves correspond to

cases a-d in Fig.3. As can be seen from Fig.4, at the lowest temperature the surface area

oscillates periodically with minima on layer completion, alternating with maxima at about half-

filled layers. Thus growth proceeds essentially layer by layer. When, following the formation of

a 2-D nucleus, a layer spreads, the surface area increases until a half-f'flled layer state is reached

and then it decreases until a layer is completed. However, when the temperature is increased and,

thus, the surface becomes rougher, the distinction between a half-filled layer and completed

layers is blurred, i.e. new layers form before completion of the earlier layers. With increasing

roughness, the periodicity disappears and the surface becomes delocalized.

Figure 5 illustrates the consequences of surface diffusion. Bulk diffusion is not

considered in these examples with _/kT=l.6, A_/kT=0.69. It can be seen that with surface

diffusion (Fig. 5b) the crystal surface is much smoother than without (Fig.5a). The reason is that

surface diffusion can provide an additional way for interfacial particles to relax to some

energetically more favorable (low energy) sites and, hence, reduces the amplitude of the surface

roughness. Of course, as we have shown before, 16 such a stabilizing contribution is effective

only at a length scale comparable to the surface diffusion length, which, in turn, is sensitive to

the surface roughness. 16 Generally speaking, the smoother a surface is, the farther an interfacial

particle can diffuse during its lifetime on the surface. Hence, as shown by the simulation results

of Fig.6, the surface diffusion length decreases with increasing temperature. In addition to the

temperature effect, Fig.6 also reveals a strong dependence of surface diffusion length on

supersaturation. This was not taken into account in earlier simulations, 11 in which the surface

diffusion length was considered as an externally adjustable parameter, independent of
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temperatureandsupersaturation.By contrast,in ourmodelsurfacediffusion is anintegralpartof

theattachmentandevaporationprocesses.

Unlike surfacediffusion, bulk diffusion actsdestabilizingon theinterfacemorphology.

15-17This is shownin Fig.7for acasewith surfacediffusion, AIx/kT=3.0and d_/kT=2.3.For

thethreesubfiguresthemeanfreepathin thenutrientwasdecreasedfrom "infinite" (Fig.7a),to
1'

ten (Fig.7b) and one crystal lattice constant (Fig.7c), respectively. The infinite mean free path

corresponds to direct jumps of growth units from the source onto the crystal surface, as in the

simulations leading to Figs.3 and 5. A mean free path of one lattice unit implies an extremely

dense nutrient similar to a liquid. It is evident from this figure that bulk diffusion, particularly in

the case of a short mean free path (Fig.7c), destabilizes the surface morphology. With increasing

surface roughness not only is the stabilizing effect of surface diffusion weak, but simultaneously

the stabilizing anisotropy in surface kinetics is decreased. Once a protrusion forms by chance, it

will be amplified by the bulk diffusion. At intermediate values of temperature and

supersaturation, there exists a competition between surface kinetics and bulk diffusion. Only if

the surface kinetics prevails, can crystal surfaces remain stable, i.e. facetted. 16 More pronounced

destabilization from bulk diffusion at higher temperatures will be shown later.

2. Supersaturation effects

Increases in supersaturation can also affect the crystal morphology through kinetic

roughening. 41-44 This is also born out by our 2-D simulations. 15,16 The influence of

supersaturation on a 3D growth morphology is shown in Fig.8, in which the temperature and

bond strength are kept constant (¢/kT = 3.9). Both surface and bulk diffusion are included. One

sees that with increasing supersaturation the size of the 2-D clusters decreases, the surface

roughens, eventually leading to many depressions and protrusions on the surface, and even

vacancies in the crystal. As formulated in section II.A, an increase in supersaturation causes an

increase in impingement rate (Eq.2) and, hence, a relative decrease in evaporation probability

(Eq.6). When the supersaturation reaches some critical value, the surface kinetics become

relatively less important and the growth process is controlled by bulk diffusion. The ensuing loss
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of facet stability is further illustrated in Fig.9 by profiles of the interracial layer occupation

numbers. The four profiles correspond to the cases depicted in Fig. 8. One clearly sees that the

interracial width grows with increasing supersaturation.

The above results reveal significant concentrations of overhangs and vacancies in the

crystal at higher supersaturations and temperatures. Hence, under these conditions, the SOS (no

overhang) assumption is unrealistic for the description of crystal growth morphologies. Thus,

the SOS assumption is only a good approximation at low temperatures and supersaturations

where the surface morphology is controlled by surface kinetics rather than bulk diffusion. Note,

however, that the supersaturation value required for significant kinetic roughening depends on

both bond strength and temperature. A crystal surface can have the same roughness at different

combinations of supersaturation and temperature.

In order to illustrate the dependence of the anisotropy in interface kinetics parameters on

growth conditions, we have plotted in Fig.10 the sticking probabilities at sites with various

numbers of nearest neighbors as a function of temperature/bond strength and supersaturation

(Eq. 9). For clarity only surfaces for P1 s , P3 s (kink site) and P5 s are plotted in this figure. Note

the temperature independence of P3 s that results from the assumption of local equilibrium at the

kink site underlying Eq.9. Figure 10 well illustrates the strong dependence of the anisotropy in

sticking probability (separation between P1 s and P5 s) on temperature and supersaturation. At low

values of these parameters, P1 s and P5 s are nearly constant and close to 0 and 1 respectively.

This reflects the difficulty of the attachment of isolated particles and the ease with which holes

(i.e. sites with more than 3 solid nearest neighbors) are filled. One can also see from this figure

that the anisotropy in sticking probability can be more effectively reduced by increasing the

temperature than by increasing the supersaturation. There is a rapid decrease in the anisotropy of

the sticking probability around _/kT = 1.0 - 2.0 at low supersaturation. The value of the

anisotropy in sticking probability is a fundamental quantity for controlling the morphology of a

crystal surface. Only when the anisotropy is significant can a crystal retain a stable, facetted

form.



15

3. Surface roughness

To further quantify the surface morphology features we use a criterion originally

introduced by Burton-Cabrera and Frank (BCF) 28 that defines the surface roughness Rs in terms

of the surface energy E (i.e. the number of broken bonds times _) at temperature T and the

surface energy E0 for a perfectly smooth surface at zero temperature, in the form

Rs -E-Eo (12)
Eo

This Rs is a merely geometrical measure that depends only on the number of broken lateral

bonds per unit area. The variation of Rs with temperature obtained from a simulation of an

equilibrium situation (AI.t/kT = 0) is plotted in Fig. 11. One can see that the surface roughness

monotonically increases with temperature, with a slope that is highly temperature dependent.

There is also a unique inflection point (location of maximum slope), which, as better indicated by

the plot of the derivative dRs/dT(T) in the same figure, lies at kT/_ = 0.62. Since Rs is

proportional to the surface energy, dRs/dT should be proportional to the heat capacity or specific

heat of the surface. A singularity in heat capacity is characteristic for a phase transition. But in

MC simulation, the singularity has been degraded owing to the effect of finite system size.45, 46

Swendsen 9 first used a maximum in heat capacity in a MC simulation to define the roughening

transition temperature. He obtained for a simple cubic lattice TR -_ 0.575 O/k. Leamy and Gilmer

7 found, by using a different criterion and employing the SOS restriction, a roughening transition

temperature TR _ 0.64 0/k, which is surprisingly close to our value. This indicates again that the

SOS approximation is appropriate for the description of surface morphology under equilibrium

conditions. However, as has been shown above, the SOS assumption is no longer valid when

the growth becomes bulk diffusion controlled, i.e. the surface has become rough.

In Fig. 12 we have delineated the temperature-supersaturation combinations for surface

roughening transitions, as obtained from our MC results and Eq.12 with the inflection point
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criterion, for systemswith variouscombinationsof surfaceandbulk diffusion conditions.As

reflectedby theextentof therespectivestability regions(smoothvs. rough),surfaceson which

surfacediffusion is significantcanretainatomicsmoothnessup to highertemperaturesand/or

supersaturationsthanwithout surfacediffusion. Bulk diffusion, on theotherhand,reducesthe

smooth(stable)regionin the _/kTvs.AI.t/kTplane, aswehaveseenmorequalitativelybefore.

4. Re-evaporation effects

All of the above results were obtained with the new algorithm that accounts for the

possibility of re-evaporation of interracial particles. To gauge the effect of re-evaporation with

respect to the earlier noise reduction algorithm,15,16 Fig.13 presents some results obtained

without re-evaporation and either without or with the multiple-registration scheme used in our

earlier work. Otherwise the growth conditions in Fig.13 a-b are the same as in Fig. 8a ( AI.t/kT =

0.69) while the conditions in Fig. 13c-d are the same as in Fig.Sc (AI.t/kT = 5.0), with _/kT = 3.9

for all. The multiple-registration noise reduction schemel5,16 used for Figs. 13b and 13d requires

10 registrations of incoming particles at a site i before that site is considered occupied.

Comparison of the corresponding cases in Figs. 8 and 13 shows that at low supersaturations the

noise reduction scheme is somewhat more effective in smoothing the surface than re-evaporation

At high supersaturation, however, both schemes give nearly the same smoothness (compare

Figs.Sc and 13d). Similar conclusions can be drawn for the smoothing effect of the two schemes

upon variations of O/kT. Hence we conclude that at situations far from equilibrium or at high

temperatures, the noise reduction scheme can give qualitatively similar results as the new

evaporation scheme, for which, however, the physical implications are much clearer.

5. Spherical source

The above results were based on the uniform nutrient flux conditions of the planar

geometry of Fig.la. But in reality nutrient flux conditions are most often non-uniform. To

further explore the effect of nonuniform supply beyond the 2-D results obtained in 15,16 with a

circular source, we have performed MC runs with growth onto a cubic surface inside a spherical

source; see fig lb. Figure 14 presents surface morphologies obtained in this geometry with O/kT
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= 2.3andAta/kT = 0.69. The mean free path or jump length is one lattice constant, i.e. 14 = b in

Fig.14a-b, and five lattice constants (_4 = 5b) in Fig.14c-d. Similar to the 2-D findings in, 15,16

one sees that loss of stability of a facet is associated with the formation of a depression in its

center and, correspondingly, preferred growth at comers and edges. As discussed before 15,16

this occurs because the anisotropy in surface kinetics can compensate for the nonuniformity in

nutrient supply only up to a certain critical size of the crystal. This nonuniformity decreases with

increasing mean free path of the diffusing nutrient particles. Hence, as is shown by Fig. 14, the

critical crystal size increases with increasing mean free path. To quantify the critical size we have

plotted in Fig. 15 the normalized total surface area of the growing cubic crystal versus the size of

the crystal. The surface area is normalized by the total surface area (six faces) 6M 2/3 of a

perfectly smooth cubic crystal consisting of M growth units. As long as the surface area follows

the 6M2/3behavior, a crystal is considered morphologically stable. When a crystal begins to lose

its stable facetted form its normalized total surface area increases. Somewhat arbitrarily, we

define the critical size as the one at which the surface area exceeds that of a smooth surface by

15%. Thus we find that the crystals depicted in Fig. 14 have critical sizes of about 27b and 52b,

respectively, for 14 = b and [4 = 5b.

In Fig.16. we have summarized our 3-D results for the dependence of the critical size on

mean free path at fixed Al.t/kT and various O/kT 's, together with the earlier 2-D results. 16 One

can see that the critical size increases with decreasing temperature. At fixed temperature and

supersaturation, the critical size scales linearly with the mean free path in the parameter range

considered. The 3-D simulations yield larger slopes than the corresponding 2-D cases, i.e. the 3-

D cases are morphologically more stable. This results from the fact that, on average, there are

more solid neighbors associated with interfacial particles in three dimensions and, thus, the

(stabilizing) anisotropy in interface kinetics is more pronounced. Although computational time

limitations do not allow for the direct simulation of the critical size at the mean free path used in

morphological stability experiments, 22"26 Fig.16 encourages us to scale linearly to these

conditions. This leads to an order-of-magnitude agreement between experimental and modelling
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resultsfor thecritical size,with the3-D resultsapproachingtheexperimentalfindingscloserthan

the2-D results.16

B. Surfaces with dislocations

1. Temperature effects

The development of a growth spiral from an initially straight step that results from a

screw dislocation with Burgers vector of one lattice constant normal to the (001) face is

illustrated in Fig.17. The bond strength/temperature (i.e. _/kT) dependence of the surface

morphology with a single screw dislocation is shown in Fig. 18. In this simulation, both surface

and bulk diffusion were ignored.The supersaturation was kept constant (Ap./kT--0.69) while the

_/kT was decreased successively from 5.3, 4.6, 3.0 to 2.0. One sees that at low temperature or

high bond strength (Fig.18.a) the steps of the resulting growth spiral are quite smooth and the

shape is highly polygonized, leaving essentially only low-index steps exposed. As the

temperature is increased (Fig. 18b-d) not only do the steps roughen but also the shape of the

spiral becomes rounder and eventually indiscernible as 2-D nucleation becomes pronounced.

These morphological changes are a result of the increase in surface roughness with growth

temperature. At low temperatures (Fig.18a), growth occurs only via attachment to the spiral

steps, since the roughness of the remainder of the facet is too low to result in significant sticking

probabilities. Furthermore, due to the low roughness of the steps, the step attachment kinetics is

highly aniso_opic, leading to rather straight step shapes. As temperature is increased, the steps

and remainder of the face roughen. This resuIts in a reduction of the anisotropy in step

attachment kinects and, thus, rounding of the steps. Simultaneously, with increasing face

roughness, the energy barrier for 2-D nucleation is reduced. On further temperature increase 2-D

nucleation-assisted growth becomes increasingly important, until it dominates at _/kT = 2.0.

These results confirm that it is reasonable to neglect 2-D nucleation in simulations of

dislocation-assisted growth morphologies at low temperature and supersaturation, where the

sticking probability P1 s (see Fig.10) is very small. This allows for a drastic reduction in
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computational times required. 39 Hence, throughout the following simulations of dislocation-

assisted growth, the attachment of isolated particles, i.e. with one bond to the surface, is

suppressed.

Figure I9 was obtained by considering a pair of screw dislocation with opposite sign,

i.e. a Frank-Reed step source. 47 In order to save computer time and memory, the separation

between the centers of the dislocations was chosen to be only 7b. In reality, this separation may

be much larger. When the two growth spirals turn in opposite direction and meet, closed loops

are formed periodically. During this sequence of simulations the supersaturation was kept

constant while _/kT was decreased from 5.3 to 4.6 and 3.9, respectively, and surface and bulk

diffusion were ignored. Again, as the temperature increases the steps become rougher and the

closed loops become rounder and spaced more closely, analogous to the temperature dependent

behavior displayed in Fig. 18.

2. Supersaturation effects

The effect of supersaturation on the growth morphology of a face with a single screw

dislocation is shown in Fig.20, in which the _/kT is kept at 5.3 while the AI.t/kT is increased

successively from 0.69 to 2.0 and 3.0, again ignoring surface and bulk diffusion. As can be

seen, increases in supersaturation also make steps rougher and less polygonized, similar to the

effect of _/kT in Figs. 18 and 19. This morphological change is, of course, due to kinetic

roughening of the steps, in contrast to the thermal roughening occurring as the temperature is

increased. In addition, the terrace widths between adjacent spiral arms decrease with increasing

supersaturation, consistent with the prediction of classical theories. 28,35-38

3. Effects of surface and bulk diffusion

As has been discussed in section III.A, surface diffusion can greatly smooth the

morphology of perfect surfaces. The effect of surface diffusion in the presence of a single

dislocation is demonstrated in Fig.21. For this sequence, nutrient bulk diffusion was ignored

and the growth conditions (i.e. (_/kT and Ag/kT) were the same as those for Fig.20. We find, in

comparison to Fig.20, not only smoother steps, but also more pronounced polygonization. This
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is becausewith surfacediffusion, moregrowth units canreachroundedcorners, where, due to

the higher kink density, the attachment probability is higher. The spirals also become more

polygonized due to the resulting increase in anisotropy of step attachment kinetics This is at

variance with the conclusion of Sunagawa and Bennema, 34 who expected that surface diffusion

will suppress the formation of close-packed or periodic-bond-chain oriented steps.

Growth morphologies of a dislocated surface in the presence of both surface and bulk

diffusion are depicted in Fig.22. The growth conditions are the same as in Figs. 20 and 21, i.e.

¢/kT is kept at 5.3 and the supersaturation is increased. It is evident from this figure that bulk

diffusion is also destabilizing for steps, as revealed, for instance, by the lateral depressions at

high supersaturation (Fig.22c). But probably the most interesting new feature revealed by this

simulation is the variation of the terrace width, with narrower terraces found near the center of

the spiral, particularly at higher supersaturation (Fig.22c). This is at variance with earlier MC

simulations without bulk diffusion 39-41 and classical theories.8, 35-38 Realizing that the above

simulation is based on a mean free path length (in the bulk) equal to a lattice constant, the

decrease in terrace width toward the center of the spiral can be understood as a combined effect

of bull and surface diffusion. Since the growth hillock protrudes into the nutrient, steps and

terraces close to its center of the spiral are somewhat better supplied with growth units by bulk

diffusion. This leads to tighter winding of the spiral. 28 On the other hand, the surface diffusion

fields of terraces at the periphery of the spiral overlap less than those near the center. Overall,

this leads to higher spreading velocities of the outer turns of the spiral and, thus, an increase in

terrace width with distance from the spiral's center. In real vapor systems,where [a[ >>b, such

behavior should not be expected. It is more likely to occur in growth from condensed phases.

4. Spherical source

All of the above results for dislocation-assisted growth were obtained for the planar

geometry of Fig.la. To demonstrate the competing effect of 2-D nucleation growth and

dislocation growth in a non-uniform concentration field, we have carried out a simulation for the

3-D geometry of Fig. lb with the same growth conditions as for Fig. 14b. Among the six faces of
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the cubic crystal, five areassumedto beperfectandonly onehasa pair of dislocationswith

opposite sign. Surface diffusion is taken into account. Figure 23 shows the crystal at a stage

after exceeding its critical stable size (see discussion in section III.A). The subfigures show

different faces of the same crystal, with (a) displaying three of the five faces without dislocation

and (b) the dislocated face on top. The dislocation pair is seen to enhance the face stability. All

five originally perfect faces have developed central depressions similar to that found in Fig.23a.

This finding can be understood in terms of the different supersaturation dependence of the

growth rate in 2-D nucleation and dislocation-assisted growth. Bulk diffusion results in a lower

supersaturation in the face center than at the edges and corners. Yet, the face center region, due

to the presence of dislocation-induced surface steps, offers a higher probability for the

attachment of growth units than the edge regions in which steps are generated only by 2-D

nucleation. This increased attachment probability in the center of the face can compensate for the

leaner supply of growth units into this region, see also. 15,16 This competition of growth steps

originating at dislocations in center regions of facets, with growth steps from 2-D nucleation near

corners, has been experimentally observed by several workers; for references see. 48 Also, the

better utilization of growth units (through the anisotropy of kinetics coefficients) in regions that

are less readily supplied by the bulk diffusion field is the key point of Chernov's anisotropic

stability theory for facet growth. 21

To further illustrate the competition between 2-D nucleation growth and dislocation

growth in a non-uniform nutrient field, we have carded out a simulation at a much lower

temperature (O/kT -- 5.3) than that used for Fig.23. At the lower temperature the surface

roughness and, thus, the sticking probability is considerably reduced. Hence, in order to not

exceed prudent computational times, we have modelled only the 3-D evolution on one face, with

special periodic conditions on the lateral boundaries of the pyramid outlined in Fig. lb. Note that

the outer boundary condition in this configuration still corresponds to a spherical source as in

Fig.23. In this simulation, _p/kT is kept at 5.3, and the supersaturation is increased from 0.6 to

2.0 and 3.0, respectively. The simulations include surface diffusion and unsuppressed
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attachmentof singleparticles.Figure24showstheresultsafterattachmentof 20,000particlesin

all threecases.One seesthat at low supersaturation(Fig.24a) growth occursonly through

attachmentontostepsthatoriginateatthecentraldislocationpair.Underthesegrowthcondition,

the supersaturationincreaseat the corners16is not high enoughto overcomethe nucleation

barrier for 2-D nucleation, which, due to the low surfaceroughness,is high. The higher

supersaturationat thecorner, though,destabilizesthe dislocation-inducedgrowth steploops,

leadingto lateralprotrusionstowardsthecomers,similar to thegrowthpatternsobtainedin the

2-D situation.15,16Suchstarshapeddislocationgrowthhasbeenobservedexperimentally;see,

for example,Fig.60in.34As thesupersaturationis increased,thecontrollingeffectof thecentral

dislocationsdecreasesand 2-D nucleationbecomessignificantat thecomers (Fig.24b).At an

evenhighersupersaturation(Fig.24c),growthisessentiallydominatedby 2-D nucleationatthe

comers,in spiteof thedislocationsatthefacecenter.

IV. CLOSING REMARKS

Theabovesimulations,aswell as most earlier efforts to model surface morphologies, are

based on the supersaturation/temperature and bond strength/temperature parameters AI.t/kT and

¢/kT, respectively. These are highly idealized scaling parameters, which require utmost caution

in attempts to quantitatively compare the model predictions with actual experiments.

Specifically, it must be reemphasized that, as discussed in section II.A in connection with

Eq.2, the chemical potential difference or supersaturation used in these models is not equal to the

bulk nutrient supersaturation typically determined by the experimentalist. This chemical potential

difference is solely that part of the overall difference that drives the attachment of growth units

once they have been transported to the interfacial region, say to within a mean free path of the

growing surface. Though possible in principle, no unambiguous measurements of this interfacial

supersaturation have become available as yet. However, all crystal growth theories, as well as

measurements of interfacial undercoolings in facetted and non-facetted regions of an interface that

grows from a melt 49,50 indicate that this interfacial chemical potential difference necessary to
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drive a certain attachment (growth) rate depends on the local interface morphology (kink and step

density, etc.) and, thus, on the locally governing growth mechanism. This fact is ignored by all

modelling at this point by fixing the interracial Al.t irrespective of the "underlying" surface

morphology.

With respect to correlations of the bond or pair interaction energies, used in these models,

with values of actual systems, similar caution is required. In addition to the fact that the simple,

highly symmetric bond picture is hardly an accurate representation for actual atomic (quantum

mechanical) interactions, one must realize that the magnitudes for bond strengths are traditionally

derived from averaged bulk properties, rather than the (relaxed) surface states that govern the

attachment kinetics. Some, small improvement of this coarse description, based on a "variable

bond model", has been made by our group earlier. 51

The above material shows that current kinetic crystal growth modelling can provide

considerable physical insight into the effect of various growth parameters. Yet, it is also clear

that much more experimental and theoretical work is required before quantitative fidelity can be

expected.

Acknowledgements

The authors are grateful for the support provided by the Microgravity Science and

Applications Division of the National Aeronautics and Space Administration under Grant No.

NAG 1-972. This research has also been supported by the State of Alabama through the Center

for Microgravity and Materials Research at the University of Alabama in Huntsville, and the

Alabama Supercomputer Network.



24

References

1 A.A. Chernov, in Crystal Growth, edited by H. S. Peiser (Pergamon, Oxford 1967),

p.25.

2 A.A. Chemov and J. Lewis, J. Phys. Chem. Sol. 28, 2185 (1967).

3 V.O. Esin, V. I. Danilyuk and V. N. Porozkov, Phys. Stat. Sol. (a) 81, 163 (1984).

4 V.O. Esin, L. P. Tarabaev, V. N. Porozkov and I. A. Vdovina, J. Crystal Growth

66, 459 (1984).

5 G.H. Gilmer and P. Bennema, J. Crystal Growth 13/14, 148 (1972).

6 H.J. Leamy and K. A. Jackson, J. Appl. Phys. 42, 2121 (1971).

7 H.J. Leamy and G. H. Gilmer, J. Crystal Growth 24/25, 499 (1974).

8 H.J. Leamy, G. H. Gilmer and K. A. Jackson, in Surface Physics of Materials I,

edited by J. B. Blakely (Academic Press, New York, 1975), p. 121, and references

therein.

9 R. I-I. Swendsen, Phys. Rev. B15, 5421 (1977).

10 V.O. Esin and L. P. Tarabaev, Phys. Stat. Sol. (a) 90, 425 (1985).

11 G.H. Gilmer and P. Bennema, J. Appl. Phys. 43, 1347 (1972).

12 H. M_iller-Krumbhaar, in Monte Carlo Methods in Statistical Physics, edited by K.

Binder (Springer, Berlin, 1979), p.261, and references therein.

13 P. Bennema and J. P. Van der Eerden, in Morphology of Crystals, Part A, edited by I.

Sunagawa (Terra, Tokyo, 1987), p.1; A. A. Chemov and T. Nishinaga, ibid, p.207.

14 D.E. Temldn, in Crystallization Processes (Consultant Bureau, New York, 1966), p.15.

15 R.F. Xiao, J. I. D. Alexander and F. Rosenberger, Phys. Rev. A 38, 2447 (1988).

16 R.F. Xiao, J. I. D. Alexander and F. Rosenberger, J. Crystal Growth 100, 313 (1990).

17 Y. Saito and T. Ueta, Phys. Rev. A 40, 3408 (1989).

18 S. Krukowski and F. Rosenberger, J. Chem. Phys.(submitted).

19 W.W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444 (1964).

20 J.S. Langer, Rev. Mod. Phys. 52, 1 (1980).



21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

A. A. Chemov,J.CrystalGrowth 24/25, 11 (1974).

C. NanevandD. Iwanov, J.CrystalGrowth3/4, 530 (1968).

D. NenowandV. Stoyanova,J. CrystalGrowth41, 73 (1977).

C. NanevandD. Iwanov,CrystalRes.Technol.17, 575(1982).

D. NenowandV. StoyanovaandN. Genadiev,J. CrystalGrowth66,489 (1984).

M. Staynovaand C. Nanev,CrystalRes.Technol.24, 951 (1989).

T. A. Witten andL. M. Sander,Phys.Rev.B 27, 5686(1983).

W. K. Burton, N. CabreraandF. C. Frank,Trans.Roy. Soc.A 243,299 (1951).

F. C. Frank, Disc. FaradaySoc.48, 67 (1949).

L. J.Griffin, Phil. Mag. 41, 196(1950).

H. Bethge,Phys.Stat. Sol.2, 3 (1962).

K. W. Keller, in Crystal Growth and Characterization, Proceedings of the ISSCG2

Springschool, Japan, 1974, edited by R. Ueda and J. B. Mullin (North-Holland,

Amsterdam, 1975), p. 361.

K. Tsukamoto, J. Crystal Growth 61, 199 (1983).

I. Sunagawa and P. Bennema, in Preparation and Properties of Solid State

Materials, Vol. 7, edited by W. R. Wilcox (Marcel Dekker, New York, 1982), p. 1,

and references therein.

N. Cabrera and M. M. Levine, Phil. Mag. 1,450 (1956).

R. Kaishev, Crystal Growth 3, 29 (1962).

T. Surek, J. P. Hirth and G. M. Pound, J. Crystal Growth 18, 20 (1973).

H. Mtiller-Krumbhaar, T. W. Burkhardt and D. M. Kroll, J. Crystal Growth 38,

13 (1977).

R. H. Swendsen, P. J. Kortman, D. P. Landau and H. Mtiller-Krumbhaar, J.

Crystal Growth 35, 73 (1976).

G. H. Gilmer, J. Crystal Growth 35, 15 (1976).

A. A. Chernov, Ann. Rev. Materials Science 3, 397 (1973).

25



42

43

44

45

46

47

48

49

50

51

26

C. E. Miller, J. Crystal Growth 42, 357 (1977).

G. H. Gilmer and K. A. Jackson, in Current Topics in Materials Sciences, Vol.2, edited

by E. Kaldis and H. J. Scheel (North-Holland, Amsterdam, 1977), p.79.

J. D. Weeks, in Ordering in Strongly Fluctuating Condensed Matter Systems, edited by

T. Riste (Plenum, New York, 1980), p.293.

K. K. Mon, S. Wansleben, D. P. Landau and K. Binder, Phys. Rev. Lett. 60, 708

(1988).

P. Peczak and D. P. Landau, Phys. Rev. B 39, 11932 (1989), and references therein.

F. C. Frank and W, T. Reed, Phys. Rev. 79, 722 (1950).

W. R. Wilcox, J. Crystal Growth 38, 73 (1977).

J. C. Brice, J. Crystal Growth 6, 205 (1970).

T. Abe, J. Crystal Growth 24, 463 (1974).

J.-S. Chen, N.-B. Ming and F. Rosenberger, J. Chem Phys. 84, 2365 (1986).



Figure

Fig. 1.

Fig. 4.
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captions

Schematics of simulation geometries. (a) Planar case: lateral dimensions 60 x 60

lattice constants, with periodic boundary condition in the x- and y-directions. Space

between crystal surface and source contains nutrient through which growth units

diffuse to the crystal surface. (b) Spherical case: growing crystal in center of spherical

source. Pyramidal section is used with periodic boundary conditions in azimuthal

direction for simulation of 3-D growth morphology at low temperatures; see text.

Flowchart of simulation steps.

Effect of temperature and bond strength on crystal surface morphologies at fixed

supersaturation, AI.t / kT = 0.35. Both surface and bulk diffusion are excluded.

(a) _/kT=3.9, (b) _/kT=2.0, (c) ¢_/kT=l.6, (d) _/kT=l.4.

Normalized surface area as function of number of attached particles (in units of full

layer, i.e., 3600 particles). The normalization is based on the area of a perfectly

smooth surface. The growth conditions are the same as in Fig.3.

Effect of surface diffusion on surface morphologies at _ / kT = 1.6 and Akt / kT=

0.69 without consideration of bulk diffusion. (a) without surface diffusion, (b) with

surface diffusion.

Dependence of average surface diffusion length on bond strength/temperature at two

different supersaturations, A/.t / kT= 0.69 and 3.0.

Effect of the mean free path length in bulk diffusion on surface morphologies at

/ kT -- 2.3 and AI.t / kT = 3.0. Surface diffusion is included. (a) la]=o* (b) ]a[ =10b,

(c) I_=lb.

Effect of supersaturation on surface morphologies at (_/ kT = 3.9 and a mean free

path of one lattice unit. (a) A_/kT=0.69, (b) AI.t/kT=3.0, (c) AI.t/kT=5.0, (d)

AI.t/kT=7.0.

Coverage of interracial layers in the surface morphologies of Fig.8.



Fig. 10.

Fig.11.

Fig. 12.

Fig. 13.

Fig.14.

Fig.15.

Fig. 16.

Fig. 17.
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Stickingprobability Pis (Eq.9) asafunctionof 0/kT andAIJ/kT.For clarity,only

P1s,P3aandP5sareshown.

Surfaceroughnessandits derivativewith respectto temperatureasfunctionof 0/kTat

equilibrium(Ag/kT--0). Thenumberedarrowson theabscissaindicateroughening

temperaturesobtainedearlierby .7,9

Stabilitydiagramfor smooth(stable)andrough(unstable)growthmorphologiesas

afunctionof 0/kT andAIx/kT.SD:with surfacediffusion;BD: with bulk diffusion.

Effectof noisereduction(multipleregistration)15onsurfacemorphologiesat

0/kT = 3.9. (a) Ala/kT = 0.69, without noise reduction; (b) Ag/kT = 0.69 with

noise reduction; (c) Agt/kT = 5.0, without noise reduction; (d) Ag/kT = 5.0, with

noise reduction.

Growth morphology of three dimensional cubic crystal in a spherical source at 0/kT

= 2.3 and Ag/kT = 0.69. Noise reduction through multiple-registration. (a,b)I_

=lb, (c, d) [a_=5b.(a) On addition of 6340 particles to nucleus with 21x21x21; (b)

Further addition of 31056 particles to (a); (c) On addition of 28828 particles to

nucleus with 47x47x47; (d) Further addition of 52542 particles to (c)

Normalized total surface area as function of crystal size for a growing cubic crystal

The growth conditions are the same as in Fig.13a and b.

Dependence of critical size on mean free path at Ala/kT = 0.69 and various 0/kT for

both 2D 16 and 3D results.

Time evolution of growth step originating at single screw dislocation .0/kT = 5.0 and

Ag/kT--0.69. (a) initial straight step, (b) after attachment of 1000 particles, (c) after

attachment of 5000 particles.

Bond strength/temperature dependence of surface morphology of face with a single

dislocation. Al.t/kT=0.69. Both surface and bulk diffusion are ignored.

(a) 0/kT = 5.3, (b) OAT = 4.6, (c) 0/kT = 3.0, (d) 0/kT = 2.0.



Fig. 19.

Fig. 20.

Fig. 21.

Fig. 22.

Fig. 23.

Fig. 24.
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Bondstrength/temperaturedependenceof surfacemorphologyof facewith apairof

dislocationswith oppositesign. A_/kT--0.69.Attachmentof isolatedparticles

suppressed,bothsurfaceandbulk diffusion areignored.(a)¢/kT = 5.3,

(b) O/kT= 4.6, (c) ¢/kT = 3.9.

Supersaturationdependenceof surfacemorphologywith asinglescrewdislocation.

t)/kT -- 5.3. Both surface and bulk diffusion are ignored. (a) Ag/kT---0.69,

(b) Ap./kT=2.0, (c) AI.t/kT=3.0.

Effect of surface diffusion on surface morphology with a single screw dislocation.

Same growth conditions as in Fig.20. Bulk diffusion is neglected.

Effect of surface and bulk diffusion on surface morphology with a single screw

dislocation with same growth conditions as in Fig.20.

Growth morphology of a cubic crystal in a spherical source. The growth conditions are

the same as in Fig.14b. Different faces on the same crystal, (a) all faces without

defects, (b) top face with pair of dislocations of opposite sign.

Growth morphology of a dislocated face in a spherical source at t_/kT = 5.3 with bulk

and surface diffusion, and unsuppressed formation of 2D nuclei.

(a) A_t/kT--0.69, (b) AI.t/kT=2.0, (c) AI.t/kT=3.0.
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MORPHOLOGICAL STABILITY OF INTERFACES WITH STRONG

ANISOTROPY IN GROWTH KINETICS
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Huntsville, Alabama 35899, U. S. A

A Monte Carlo model is used to simulate the morphological evolution of crystals growing

from an incongruent vapor phase. The model combines nutrient transport, based on a modified

diffusion-limited aggregation process, with anisotropic surface kinetics and surface diffusion.

Through a systematic variation of the simulation parameters (temperature, bond strength and

supersaturation), the whole range of growth morphologies from fully facetted to side-branched

dendritic growth is recovered.

The diffusion in the bulk nutrient and the anisotropy in the interface kinetics are seen to be

morphologically destabilizing and stabilizing, respectively. It is found that for given bond strength

and symmetry of the lattice, there is a critical size for stable, macroscopically facetted growth. This

critical size scales linearly with the mean free path in the vapor. Since both thermal and kinetic

roughening reduce the kinetic anisotropy, the critical size decreases as either temperature or

supersaturation are increased. Surface diffusion is seen to stabilize facetted growth on the shorter

scale of the mean surface diffusion length.

In simulations with a uniform drift superimposed on the random walk nutrient transport,

crystal faces oriented towards the drift exhibit enhanced morphological stability in comparison to the

purely diffusive situation. Rotational drifts with periodic reversal of direction are found to be

morphologically stabilizing for all faces of the crystal.

INTRODUCTION

The characterization of the conditions under which a growing crystal is capable of preserving

its shape, i.e. is morphologically stable, is both scientifically challenging and technologically

important. Morphological stability is necessary for the _owth of homogeneous single crystals that

are needed for numerous device applications. The growth morphology and morphological stability of



acrystal,however,is anextremelycomplexproblem, involving, in general,an interactionbetween
nutrienttransportandinterfacekinetics[ 1-3].

Two basicapproachesto themorphologicaldescriptionof crystalgrowth havebeenadopted.
Thef'Lrstis themacroscopicapproachwhich involvesthesolutionof acontinuumtransportequation
coupled with moving boundary conditions [4]. The second is the simulation of microscopic

processes by tracking the individual growth units [5].

The continuum approach has lead to significant insight into the morphological evolution of

essentially isotropically responding, i. e. nonfacetted interfaces, such as prevail in many melt growth

systems. The theory of morphological stability of non-facetted growth is well established. Stability

conditions are known for a variety of simple geometries [4,6-9], including systems with weakly

nonlinear [9-11] and highly nonlinear isotropic response [ 12-14]. In addition, the coupling between

morphological and hydrodynamic instabilities has been examined [15-20]. Continuum models have

also been developed for the morphological stability of nonfacetted interfaces with anisotropies in

surface tension and growth kinetics [e.g. 21-24]. One of the most important results of these

treatments is the insight that anisotropies can stabilize otherwise unstable closed growth forms up to

a critical size. For facetted interfaces, that typically prevail in vapor and solution growth systems,

and on which strongly anisotropic growth occurs via atomic layer spreading, the necessary

conditions for morphological stability are only partly understood. Several workers have proposed an

isotropic continuum formulation for morphological stability in vapor growth. These models are

based on the assumption that stability is controlled either by the temperature gradient [25, 26] or by

capillarity and the dependence of equilibrium concentration on curvature [27]. However, the

morphologies of vapor-solid [28-32] and solution-solid interfaces [2, 33] are found to be more stable

than predicted by isotropic models. This suggests that interface kinetics play a key role in

morphological stability during facetted growth. It has been argued that polycrystalline vapor-solid

interfaces should exhibit isotropic morphological stability [27]. In general, however, this argument is

incorrect, for as long as the grain or facet size exceeds the adatom surface diffusion distance of,

typically, 100 ,_,, anisotropic layer growth will prevail [3, 28]. The stabilizing effect of atomistic

interfacial kinetics has been incorporated in several anisotropic morphological stability models [34-

41]. Again, probably the most important result obtained from these models is the loss of stability

beyond a critical crystal size [34, 41]. Such behavior has been observed in experiments [29-33]. Yet,

a complete solution which includes coupling between nutrient transport, the moving boundary and

anisotropic surface kinetics is still lacking.

An alternative to continuum descriptions of the growth process is the tracking of individual

growth units using a Monte Carlo (MC) simulation method [5,42]. MC simulations have been used

in a number of studies of the dependence of surface roughening and growth rate on supersaturation,

and temperature [5,43,44]. These studies are primarily focused on microscopic interfacial kinetics,

and occasionally include surface diffusion [45]. The influence of transport of growth units in the

bulk nutrient to the interface has received less attention. In the event that interface kinetics govern the

growth morphology, this simplification is not a severe limitation. However, in reality, nutrient bulk

transport also appears to play a decisive role and often limits the stability of growing faces [29-33,

46].

The recently developed diffusion-limited aggregation (DLA) model of Witten and Sander [47]

seems particularly appropriate to describe nutrient diffusion in crystal growth. The DLA model

simulates the growth of an aggregate by considering the random walk of a succession of particles on



adiscretizedgrid. TheDLA modelhasbeenadoptedby manyworkersto simulatevarioustypesof
non-equilibrium pattern formation [48, 49]. Typical modifications include the introduction of
"capillarity" [50, 51], anisotropic sticking probability [52, 53] and noise reduction [54-57].
Recendy,we havemodified theDLA modelto includeanisotropicinterfacial attachmentkineticsand
surfacediffusion to studythemorphologicalevolutionof crystalsgrowing from a stagnantvaporor
from avaporwith externally imposeduniform androtationaldrift [58-61]. A varietyof conditions,
ranging from kinetics- to transport-controlledgrowth were examined,and successivetransitions
from compactto opendendriticmorphologieswereobtained.Diffusion in thenutrient,andincreases
in growth temperatureand bulk supersaturationwere found to be morphologically destabilizing;
whereassurfacediffusion and anisotropyin attachmentkinetics act stabilizing. Specifically,we
found thata givensetof growth parametersdefinesacritical crystalsizebeyondwhich thecrystal's
facescannot retain their macroscopicflatness, i. e. becomemorphologically unstable. Surface
diffusion,on theotherhand,continuesto playa stabilizingrole for micro-facetslong afterthe lossof
macroscopicstability. In the following sectionwe will summarizeour efforts andresults. Most
recently,SaitoandUetahaveobtainedsimilar growth shapeevolutions from a MonteCarlomodel
with anisotropicattachmentandevaporationkineticsfeatures,usingaDLA techniquewhich launches
manywalkersatonce[62].

MODEL

Crystal growth consists, in general, in the transport of growth units towards an interface, followed

by a typically rather complex series of interfacial kinetics processes, before "final" incorporation into

the lattice occurs [63]. The rates of the interface kinetics processes of individual growth units will be

determined by the local configuration of the interface sites that the units happen to visit. Hence, at

molecular length scales, the crystal symmetry will inevitably be reflected in the anisotropy of the

attachment kinetics. This underlying symmetry will also be manifested at macroscopic length scales

unless the atomic roughness of the interface is high enough to allow diffusion in the nutrient to

control the evolution of the growing shape. Though a complete model of such complex scenarios is

not practical at this point, we have formulated a Monte Carlo model which retains the essential

physics of both nutrient transport and interface kinetics, including surface diffusion.

The gaseous nutrient is assumed to consist of highly dilute growth species A in an inert gas B

that randomizes the motion of A. The random walk (diffusion) of A in the nutrient is restricted to a

discrete lattice of spacing b, with equal jump length (representative of a mean free path), a, in all

directions, unless a drift is superimposed on the random walk. The grid spacing b represents a

lattice unit of the crystalline nucleus, which is initially prescribed in the central region of the nutrient,

and which grows through the addition of random walkers. While we may choose the jump length

and _m-idspacing to be the same to minimize computation time, in a real vapor-crystal system a >>b.

To approximate the complex processes following the arrival of a growth unit (random

walker) at the interface we made the following assumptions. The impingement rate can be obtained,

based on ideal gas kinetics, from the chemical potential difference between supersaturated bulk vapor

and average surface site, A/t, in the form [58, 61]

K + = Keq exp (Ag/kT), (1)



whereKeq is the temperaturedependentequilibrium value of K+. Since the evaporationrate is
sensitiveto the local configuration of the site from which a unit is to be dislodged, we cast it,
followingGilmer andBennema[45], into thesite-dependentform

Ki = v exp(-Ei/kT) , (2)

where v is a lattice vibration factor and Ei is the product of the pair interaction (bond) energy ¢ of a

unit with a nearest neighbor and the number of occupied neighbor sites of site i, ni.

The probability that a growth unit sticks onto a crystal surface is then Pi = K+/(K++Ki). In

order to relate Keq and v we assume local equilibrium and thus equate impingement and evaporation

rates at equilibrium and obtain [58]

Pi =
y _(n0"ni)

1+7 _ (n°'ni) , (3)

where no, the number of nearest neighbors in a kink site, is 2 for a square lattice and 3 for a

triangular lattice, and v = exp (Ag/kT) and 13 = exp (-¢/kT).

If the growth unit does not stick onto the site i, it will jump to one of its unoccupied neighbor

sites on the surface or in the nutrient. The jump probability from site i to a neighboring unoccupied

sitej is assumed to be [58, 61]

_ni-nj
Pi---_j = c'

Z _ni-nj

j , (4)

where c' is the number of unoccupied nearest neighbor sites of site i. Clearly, a larger nj results in a

higher probability that a molecule will jump to site j on the interface.

The combination of equations 3 and 4 contains the essential physics of the surface kinetics

for a crystal growing from a vapor. It should be realized that the crystal anisotropy has already been

taken into account implicitly in equations 3 and 4, since both ni and nj are anisotropic factors.

The strength o_ surface diffusion (described by equation 4) is characterized by the diffusion

time or diffusion length on the surface. An exact calculation of surface diffusion length is difficult. In

our model we estimate the average surface diffusion length _'s according to

i

_-s- "_t b , (5)

where nt is the average (residence) "time" (actually the number of MC steps) for a random walker to
diffuse on the interface.
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Figure 1. Flowchart of simulation steps.

SIMULATION PROCEDURE

A summary of the steps involved in the MC simulation is presented in the flowchart of figure
1. A growth unit is released from a circular source that surrounds the prescribed crystal nucleus.
(The choice of source diameter is discussed in [58, 61]). The random Walk is continued until the

walker encounters the interface. The number of neighbors of the impingement site is then

determined and the sticking probability Pi calculated according to equation 3. A random number R,

0 <R -< 1, is generated. If R < Pi, a registration to site i is made, and then that walker is retired.

When an interfacial site has been registered N times it is considered to be occupied. A larger number

of registrations N has the effect of reducing the noise inherent in a simulation of this kind [54-58]. If



R _> Pi, the walker will leave site i without registration and jump to one of its unoccupied

neighboring sites. The jump probability which determines the new location on the interface or in the

nutrient is calculated according to equation 4 and compared to a random number R'. As the walker

jumps to a new unoccupied site i', the above procedure is repeated. For typical values of the

interaction parameters the probability that the particle returns to the nutrient is much less thanthat for

continued residence on the surface. Successive walkers are released from the outer source and they

proceed to undergo random motion until they either escape across the source boundary or make a

registration at an interracial site. The simulation is continued until the crystal reaches a specified size

M. Note that, in contrast to real systems, once a site is considered occupied, its particle cannot leave

the site, i.e. evaporation is only permitted in transit.

The simulation was implemented on a CRAY X-MP/24. Typical CPU times used for each

simulation were between 2,000-7,000 sec. To show the sequence of growth patterns, we divided

the total growth particles into consecutive groups and outlined the morphology resulting after

completion of each group.

RESULTS AND DISCUSSION

Or0wth morphology, and nutrient concentration

distribution at mean free path of one lattice unit

First we present selected results obtained with a = b. In this case the simulation was terminated

when the growth pattern had gained 3x103 particles, which were consecutively divided into three

groups of 1,000 each. Figure 2 shows the effect of growth temperature and/or bond strength on

( .

(a)

(c)

(b)

Figure 2. Effect of bond strength and temperature on _owth patterns of a crystal (triangular lattice)

at a fixed normalized supersaturation (Ak/kT = 0.69). (a) _/kT = 3.91; (b) ¢/kT = 2.30; (c) ¢/kT =

0.69; (d) ¢/kT = 0.36.



growth morphology at a fixed normalized supersaturation (Ap./kT = 0.69 or y = 2.0). At low

temperatures the growing "crystals" retain a compact, facetted form up to their terminal size (figure

2a) despite the appreciable supersaturation. With increasing temperature or decreasing _/kT, the

even smaller growth forms, i.e. after 1000-2000 growth units, show "microscopic" depressions (of

a few lattice constants) in the center of the facets. Later growth under these or even lower _)/kT

conditions, leads to the evolution of "macroscopic" depressions (figure 2b). On further increase of

the temperature, this transition occurs at even smaller sizes and dendritic growth evolves (figure 2c)

which subsequently exhibits extensive side-branching (figure 2d).

Figure 2 provides considerable insight into the morphologically stabilizing effect of

anisotropic surface kinetics. One sees that the formation of depressions always sets in at facet (face)

centers. This, as has been shown in detail in [60], is associated with a local decrease in both the

nutrient concentration and its gradient. However, at the comers, which are more readily reached by

building blocks, both the concentration and its gradient remain high. Furthermore, as can be seen

from the sequence of contours of the lower temperature parts of figure 2, the formation of a

microscopic depression is associated with the exposure of a higher step density in that region.

Hence, both local sticking probability (equation 3) and jumping probability from neighboring sites

(equation 4) increase. Consequently, not only is the leaner supply of growth units in the central

region better utilized, but the surface diffusion flux is also increased. Both aid the crystal in retaining

its (macroscopically) facetted morphology. This stabilizing effect reaches a limit as, with increasing

depression, the growth step density becomes sufficient to accommodate the attachment of most

growth units that arrive at the depleted face centers. Further increase in the crystal size is then

accompanied by the loss of morphological stability.

This interplay between destabilizing bulk diffusion and stabilizing interface kinetics has been

invoked before in Chernov's theory of growth-shape preservation for facetted crystals [34] and its

adaption by Kuroda et al. [35].

The above simulation also shows, for the first time, the destabilizing effect of an increase in

the growth temperature, that can be deduced from the transition from facetted to non-facetted shapes

in figure 2. This transition is loosely speaking analogous to thermal roughening; for a detailed

discussion see [64-66].

We have also investigated the effect of supersaturation on growth morphology [58], which

enters in our model through the dependence of the sticking probability Pi (equation 3) on the

impingement rate K + (equation 1). We found that an increase in supersaturation also decreases the

critical crystal size beyond which the macroscopic face stability is lost. This is analogous to kinetic

roughening observed in earlier MC modelling [67-69] and in experimental studies [69-73]. The

dependence of the crystal morphology on normalized supersaturation and bond strength/temperature

is tightly coupled. All our results for a triangular lattice are summarized in figure 3 [58]. Depending

on the value of q_/kT and AIMkT, the growing crystal can acquire one of the following morphologies:

compact facetted (region I), compact branched (region II), and open branched and sidebranched

(region III). In general, the supersaturation above which the compact facetted form is no longer

stable decreases with decreasing bond strength or increasing temperature.
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Figure 3. Crystal-growth morphology as a collective effect of supersaturation and bond strength (or

temperature) for triangular lattice at mean free path of one lattice unit. In region I crystals acquire

compact-facetted forms; in region II compact branched with six-fold symmetry; in region lrI

dendritic with multiple sidebranches. Symbols: Monte Carlo results judged as "boundary cases".

Solid line: Temkin's boundary between facetted and nonfacetted growth for a simple cubic lattice

[74]. For further details see [58].

Changes in _m'owth morphology with increase in mean free path

In this section we increase the mean free path and present growth patterns arising on a square

lattice after addition of four groups of 2,500 particles each. Figure 4 shows the effect on

morphology of bond strength or temperature at a constant normalized supersaturation, and a mean

free path of a = 10b. As compared to results obtained on a square lattice for a--b [60] the critical size

of a facet has increased about tenfold. The stabilizing effect of an increase in the mean flee path is

further illustrated in figure 5, which is for the same fixed values of growth temperature and

supersaturation as figure 4d. One sees that the growth morphology becomes increasingly compact

and facetted as a is increased in steps from 5 to 100b. Such morphological changes have been

observed experimentally [29-33]: growing facetted crystals became centrally depressed as the mean

free path was decreased by increasing the partial pressure of the inert gas. We have found that the

critical crystal size scales linearly with the mean free path in the parameter range considered [60].

Extrapolation of the critical size to more realistic conditions [60] gave reasonable agreement with

critical sizes found experimentally [31 ].

Critical inspection of figures 4 and 5 shows that even under conditions in which macroscopic

facet stability is lost, the contours possess microscopic facets, i.e. flat regions of a much shorter

length scale which, as shown in [60, 61], corresponds to the average surface diffusion length.
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Figure 4. Effect of bond strength and temperature on growth patterns at a large mean free path (a =

10 lattice units) at a fixed supersaturation (Ag/kT = 0.69). (a) ¢/kT = 4.60; (b) ¢/kT = 3.91; (c)

Q/kT = 2.30; (d) ¢/kT = 0.69. Contours corresponds to addition of 2,500 particles each.

Changes in crystal morp_ hology in the presence of a drift

With an externally imposed drift, the individual jumps of a random walker will be biased, see

[59, 60]. Figure 6 shows the effect of a uniform drift (i.e. with an additional unidirectional

displacement of d - 2b at each random jump) on growth morphology for the same conditions as

figure 4. One sees that the drift causes asymmetric growth. Sites facing the drift acquire building

blocks more readily than those on the lee side. Although the drift affects all cases, the response of

the growth morphology increases with decreasing bond strength or increasing temperature (figure

6a-d). In addition to modifying the growth rate, the drift is also seen to stabilize the front face in

comparison to the corresponding "no-drift cases of figure 4.

In addition to unidirectional drifts, we have also investigated the consequences of rotational

drifts [60]. In particular, rotational drifts with periodic reversal of direction were found to stabilize

facetted morphologies. This is in agreement with observed growth morphologies of crystals subject

to frequent rotation reversals [60].



(a) (b)

Figure 5. Effect of mean free path on

growth patterns at Agt/kT -- 0.69 and

¢/kT - 0.69. (a) a = 5b; (b) a = 25b; (c)

a -- 50b; (d) a= 100b. Contours

correspond to addition of 2,500 particles
each.

(c). (d)

Figure 6. Effect of drift with d = 2b on (a)

growth morphology. Growth
conditions otherwise the same as in

figure 4, i.e., AI.t/kT = 0.69. (a) ¢/kT

= 4.60; (b) ¢/kT = 3.91; (c) ¢/kT = _]__ l_

2.30; (d) ¢/kT = 0.69. The arrow _]/ _\_

indicates the direction of the drift. //f _......_ _\\

(b)

(c) (d)
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